Spaces:
Running
Running
MonkeyJuice
commited on
Commit
•
8cdd8e4
1
Parent(s):
bbe49e5
Update
Browse files- app.py +44 -49
- ignoreTag.txt +62 -0
- ignoreTag2.txt +3 -0
- style.css +22 -2
app.py
CHANGED
@@ -2,10 +2,6 @@
|
|
2 |
|
3 |
from __future__ import annotations
|
4 |
|
5 |
-
import os
|
6 |
-
import pathlib
|
7 |
-
import tarfile
|
8 |
-
|
9 |
import deepdanbooru as dd
|
10 |
import gradio as gr
|
11 |
import huggingface_hub
|
@@ -13,21 +9,6 @@ import numpy as np
|
|
13 |
import PIL.Image
|
14 |
import tensorflow as tf
|
15 |
|
16 |
-
DESCRIPTION = '# [KichangKim/DeepDanbooru](https://github.com/KichangKim/DeepDanbooru)'
|
17 |
-
|
18 |
-
|
19 |
-
def load_sample_image_paths() -> list[pathlib.Path]:
|
20 |
-
image_dir = pathlib.Path('images')
|
21 |
-
if not image_dir.exists():
|
22 |
-
path = huggingface_hub.hf_hub_download(
|
23 |
-
'public-data/sample-images-TADNE',
|
24 |
-
'images.tar.gz',
|
25 |
-
repo_type='dataset')
|
26 |
-
with tarfile.open(path) as f:
|
27 |
-
f.extractall()
|
28 |
-
return sorted(image_dir.glob('*'))
|
29 |
-
|
30 |
-
|
31 |
def load_model() -> tf.keras.Model:
|
32 |
path = huggingface_hub.hf_hub_download('public-data/DeepDanbooru',
|
33 |
'model-resnet_custom_v3.h5')
|
@@ -47,9 +28,7 @@ model = load_model()
|
|
47 |
labels = load_labels()
|
48 |
|
49 |
|
50 |
-
def predict(
|
51 |
-
image: PIL.Image.Image, score_threshold: float
|
52 |
-
) -> tuple[dict[str, float], dict[str, float], str]:
|
53 |
_, height, width, _ = model.input_shape
|
54 |
image = np.asarray(image)
|
55 |
image = tf.image.resize(image,
|
@@ -65,24 +44,51 @@ def predict(
|
|
65 |
indices = np.argsort(probs)[::-1]
|
66 |
result_all = dict()
|
67 |
result_threshold = dict()
|
|
|
68 |
for index in indices:
|
69 |
label = labels[index]
|
70 |
prob = probs[index]
|
71 |
result_all[label] = prob
|
72 |
if prob < score_threshold:
|
73 |
break
|
|
|
74 |
result_threshold[label] = prob
|
75 |
-
result_text = ', '.join(
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
with gr.Row():
|
85 |
-
with gr.Column():
|
86 |
image = gr.Image(label='Input', type='pil')
|
87 |
score_threshold = gr.Slider(label='Score threshold',
|
88 |
minimum=0,
|
@@ -90,27 +96,16 @@ with gr.Blocks(css='style.css') as demo:
|
|
90 |
step=0.05,
|
91 |
value=0.5)
|
92 |
run_button = gr.Button('Run')
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
result = gr.Label(label='Output', show_label=False)
|
97 |
-
with gr.Tab(label='JSON'):
|
98 |
-
result_json = gr.JSON(label='JSON output',
|
99 |
-
show_label=False)
|
100 |
-
with gr.Tab(label='Text'):
|
101 |
-
result_text = gr.Text(label='Text output',
|
102 |
-
show_label=False,
|
103 |
-
lines=5)
|
104 |
-
gr.Examples(examples=examples,
|
105 |
-
inputs=[image, score_threshold],
|
106 |
-
outputs=[result, result_json, result_text],
|
107 |
-
fn=predict,
|
108 |
-
cache_examples=os.getenv('CACHE_EXAMPLES') == '1')
|
109 |
|
110 |
run_button.click(
|
111 |
fn=predict,
|
112 |
inputs=[image, score_threshold],
|
113 |
-
outputs=[
|
114 |
api_name='predict',
|
115 |
)
|
|
|
|
|
116 |
demo.queue().launch()
|
|
|
2 |
|
3 |
from __future__ import annotations
|
4 |
|
|
|
|
|
|
|
|
|
5 |
import deepdanbooru as dd
|
6 |
import gradio as gr
|
7 |
import huggingface_hub
|
|
|
9 |
import PIL.Image
|
10 |
import tensorflow as tf
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def load_model() -> tf.keras.Model:
|
13 |
path = huggingface_hub.hf_hub_download('public-data/DeepDanbooru',
|
14 |
'model-resnet_custom_v3.h5')
|
|
|
28 |
labels = load_labels()
|
29 |
|
30 |
|
31 |
+
def predict(image: PIL.Image.Image, score_threshold: float):
|
|
|
|
|
32 |
_, height, width, _ = model.input_shape
|
33 |
image = np.asarray(image)
|
34 |
image = tf.image.resize(image,
|
|
|
44 |
indices = np.argsort(probs)[::-1]
|
45 |
result_all = dict()
|
46 |
result_threshold = dict()
|
47 |
+
result_html = ''
|
48 |
for index in indices:
|
49 |
label = labels[index]
|
50 |
prob = probs[index]
|
51 |
result_all[label] = prob
|
52 |
if prob < score_threshold:
|
53 |
break
|
54 |
+
result_html = result_html + '<p class="m5dd_list use"><span>' + str(label) + '</span><span>' + str(round(prob, 3)) + '</span></p>'
|
55 |
result_threshold[label] = prob
|
56 |
+
result_text = ', '.join(result_threshold.keys())
|
57 |
+
result_text = '<div id="m5dd_result">' + str(result_text) + '</div>'
|
58 |
+
result_html = '<div>' + str(result_html) + '</div>'
|
59 |
+
return result_html, result_text
|
60 |
+
|
61 |
+
js = """
|
62 |
+
async () => {
|
63 |
+
document.addEventListener('click', function(event) {
|
64 |
+
let tagItem = event.target.closest('.m5dd_list')
|
65 |
+
let resultArea = event.target.closest('#m5dd_result')
|
66 |
+
if (tagItem){
|
67 |
+
if (tagItem.classList.contains('use')){
|
68 |
+
tagItem.classList.remove('use')
|
69 |
+
}else{
|
70 |
+
tagItem.classList.add('use')
|
71 |
+
}
|
72 |
+
document.getElementById('m5dd_result').innerText =
|
73 |
+
Array.from(document.querySelectorAll('.m5dd_list.use>span:nth-child(1)'))
|
74 |
+
.map(v=>v.innerText)
|
75 |
+
.join(', ')
|
76 |
+
}else if (resultArea){
|
77 |
+
const selection = window.getSelection()
|
78 |
+
selection.removeAllRanges()
|
79 |
+
const range = document.createRange()
|
80 |
+
range.selectNodeContents(resultArea)
|
81 |
+
selection.addRange(range)
|
82 |
+
}else{
|
83 |
+
return
|
84 |
+
}
|
85 |
+
})
|
86 |
+
}
|
87 |
+
"""
|
88 |
+
|
89 |
+
with gr.Blocks(css="style.css") as demo:
|
90 |
with gr.Row():
|
91 |
+
with gr.Column(scale=1):
|
92 |
image = gr.Image(label='Input', type='pil')
|
93 |
score_threshold = gr.Slider(label='Score threshold',
|
94 |
minimum=0,
|
|
|
96 |
step=0.05,
|
97 |
value=0.5)
|
98 |
run_button = gr.Button('Run')
|
99 |
+
result_text = gr.HTML(value="<div></div>")
|
100 |
+
with gr.Column(scale=3):
|
101 |
+
result_html = gr.HTML(value="<div></div>")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
run_button.click(
|
104 |
fn=predict,
|
105 |
inputs=[image, score_threshold],
|
106 |
+
outputs=[result_html, result_text],
|
107 |
api_name='predict',
|
108 |
)
|
109 |
+
demo.load(None,None,None,_js=js)
|
110 |
+
|
111 |
demo.queue().launch()
|
ignoreTag.txt
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
uncensored,
|
2 |
+
mosaic_censoring,
|
3 |
+
pointless_censoring,
|
4 |
+
convenient_censoring,
|
5 |
+
bar_censor,
|
6 |
+
heart_censor,
|
7 |
+
censored,
|
8 |
+
twitter_username,
|
9 |
+
patreon_username,
|
10 |
+
signature,
|
11 |
+
watermark,
|
12 |
+
artist_name,
|
13 |
+
character_name,
|
14 |
+
copyright_name,
|
15 |
+
artist_name,
|
16 |
+
virtual_youtuber,
|
17 |
+
eyebrows_visible_through_hair,
|
18 |
+
eyes_visible_through_hair,
|
19 |
+
hair_between_eyes,
|
20 |
+
web_address,
|
21 |
+
bangs,
|
22 |
+
monochrome,
|
23 |
+
letterboxed,
|
24 |
+
bad_feet,
|
25 |
+
oekaki,
|
26 |
+
holding_hands,
|
27 |
+
nail_polish,
|
28 |
+
sandwiched,
|
29 |
+
symbol-shaped_pupils,
|
30 |
+
greyscale,
|
31 |
+
sketch,
|
32 |
+
speech_bubble,
|
33 |
+
spoken_heart,
|
34 |
+
spoken_musical_note,
|
35 |
+
spoken_question_mark,
|
36 |
+
spoken_sweatdrop,
|
37 |
+
spoken_squiggle,
|
38 |
+
spoken_object,
|
39 |
+
letterboxed,
|
40 |
+
spoken_interrobang,
|
41 |
+
spoken_exclamation_mark,
|
42 |
+
spoken_anger_vein,
|
43 |
+
spoken_blush,
|
44 |
+
thought_bubble,
|
45 |
+
toe_scrunch,
|
46 |
+
character_censor,
|
47 |
+
novelty_censor,
|
48 |
+
aqua_nails,
|
49 |
+
black_nails,
|
50 |
+
green_nails,
|
51 |
+
fingernails,
|
52 |
+
multicolored_nails,
|
53 |
+
nail_art,
|
54 |
+
orange_nails,
|
55 |
+
red_nails,
|
56 |
+
pink_nails,
|
57 |
+
purple_nails,
|
58 |
+
toenail_polish,
|
59 |
+
toenails,
|
60 |
+
yellow_nails,
|
61 |
+
blue_nails,
|
62 |
+
interlocked_fingers,
|
ignoreTag2.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
rating:safe,
|
2 |
+
rating:questionable,
|
3 |
+
rating:explicit,
|
style.css
CHANGED
@@ -1,3 +1,23 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
}
|
|
|
1 |
+
.m5dd_list {
|
2 |
+
display: flex;
|
3 |
+
cursor: pointer;
|
4 |
+
font-size: 1.2em;
|
5 |
+
padding: 0.2em 0.5em;
|
6 |
+
}
|
7 |
+
|
8 |
+
.m5dd_list>span:nth-child(1) {
|
9 |
+
flex: 1;
|
10 |
+
}
|
11 |
+
|
12 |
+
.m5dd_list>span:nth-child(2) {
|
13 |
+
color: #aaa;
|
14 |
+
}
|
15 |
+
|
16 |
+
.m5dd_list:nth-child(even) {
|
17 |
+
background: #ecedf0;
|
18 |
+
}
|
19 |
+
|
20 |
+
.m5dd_list:not(.use)>span {
|
21 |
+
text-decoration: line-through;
|
22 |
+
color: #ccc;
|
23 |
}
|