#!/usr/bin/env python from __future__ import annotations import gradio as gr import PIL.Image from genTag import genTag def predict(image: PIL.Image.Image, score_threshold: float): result_threshold = genTag(image, score_threshold) result_html = '' for label, prob in result_threshold.items(): result_html = result_html + '<p class="m5dd_list use"><span>' + str(label) + '</span><span>' + str(round(prob, 3)) + '</span></p>' result_html = '<div>' + str(result_html) + '</div>' result_text = ', '.join(result_threshold.keys()) result_text = '<div id="m5dd_result">' + str(result_text) + '</div>' return result_html, result_text js = """ async () => { document.addEventListener('click', function(event) { let tagItem = event.target.closest('.m5dd_list') let resultArea = event.target.closest('#m5dd_result') if (tagItem){ if (tagItem.classList.contains('use')){ tagItem.classList.remove('use') }else{ tagItem.classList.add('use') } document.getElementById('m5dd_result').innerText = Array.from(document.querySelectorAll('.m5dd_list.use>span:nth-child(1)')) .map(v=>v.innerText) .join(', ') }else if (resultArea){ const selection = window.getSelection() selection.removeAllRanges() const range = document.createRange() range.selectNodeContents(resultArea) selection.addRange(range) }else{ return } }) } """ with gr.Blocks(css="style.css") as demo: with gr.Row(): with gr.Column(scale=1): image = gr.Image(label='Input', type='pil') score_threshold = gr.Slider(label='Score threshold', minimum=0, maximum=1, step=0.05, value=0.5) run_button = gr.Button('Run') result_text = gr.HTML(value="<div></div>") with gr.Column(scale=3): result_html = gr.HTML(value="<div></div>") run_button.click( fn=predict, inputs=[image, score_threshold], outputs=[result_html, result_text], api_name='predict', ) demo.load(None,None,None,_js=js) demo.queue().launch()