#!/usr/bin/env python from __future__ import annotations import gradio as gr import PIL.Image import zipfile from genTag import genTag def predict(image: PIL.Image.Image, score_threshold: float): result_threshold = genTag(image, score_threshold) result_html = '' for label, prob in result_threshold.items(): result_html = result_html + '

' + str(label) + '' + str(round(prob, 3)) + '

' result_html = '
' + str(result_html) + '
' result_text = ', '.join(result_threshold.keys()) result_text = '
' + str(result_text) + '
' return result_html, result_text def predict_batch(zip_file, score_threshold: float, progress=gr.Progress()): result = '' with zipfile.ZipFile(zip_file) as zf: for file in progress.tqdm(zf.namelist()): print(file) if file.endswith(".png") or file.endswith(".jpg"): image_file = zf.open(file) image = PIL.Image.open(image_file) image = image.convert("RGB") result_threshold = genTag(image, score_threshold) tag = ', '.join(result_threshold.keys()) result = result + str(file) + '\n' + str(tag) + '\n' return result with gr.Blocks(css="style.css", js="script.js") as demo: with gr.Tab(label='Single'): with gr.Row(): with gr.Column(scale=1): image = gr.Image(label='Upload a image', type='pil', sources=["upload", "clipboard"], height='20em') score_threshold = gr.Slider(label='Score threshold', minimum=0, maximum=1, step=0.05, value=0.5) run_button = gr.Button('Run') result_text = gr.HTML(value="
") with gr.Column(scale=2): result_html = gr.HTML(value="
") with gr.Tab(label='Batch'): with gr.Row(): with gr.Column(scale=1): batch_file = gr.File(label="Upload a ZIP file containing images", file_types=['.zip'], height='20em') score_threshold2 = gr.Slider(label='Score threshold', minimum=0, maximum=1, step=0.05, value=0.5) run_button2 = gr.Button('Run') with gr.Column(scale=2): result_text2 = gr.Textbox(lines=5, show_copy_button=True) run_button.click( fn=predict, inputs=[image, score_threshold], outputs=[result_html, result_text], api_name='predict', ) run_button2.click( fn=predict_batch, inputs=[batch_file, score_threshold2], outputs=[result_text2], api_name='predict_batch', ) demo.queue().launch()