import gradio as gr from transformers import pipeline languages = [ "Arabic", "Basque", "Breton", "Catalan", "Chinese_China", "Chinese_Hongkong", "Chinese_Taiwan", "Chuvash", "Czech", "Dhivehi", "Dutch", "English", "Esperanto", "Estonian", "French", "Frisian", "Georgian", "German", "Greek", "Hakha_Chin", "Indonesian", "Interlingua", "Italian", "Japanese", "Kabyle", "Kinyarwanda", "Kyrgyz", "Latvian", "Maltese", "Mongolian", "Persian", "Polish", "Portuguese", "Romanian", "Romansh_Sursilvan", "Russian", "Sakha", "Slovenian", "Spanish", "Swedish", "Tamil", "Tatar", "Turkish", "Ukranian", "Welsh" ] pipe = pipeline("text-classification", model="Mike0307/multilingual-e5-language-detection") def func(inp): result = '' out = pipe(inp) for lang in out: result += languages[int(lang['label'][6:])] + ' ' + str(lang['score']) + '\n' return result demo = gr.Interface(fn=func, inputs="text", outputs="text") demo.launch()