from transformers import pipeline import pandas as pd from openai import OpenAI import gradio as gr import matplotlib.pyplot as plt from dotenv import dotenv_values #This is a model for a multi-label classification task that classifies text into different emotions. It works only in English. classifier = pipeline("text-classification", model="SamLowe/roberta-base-go_emotions") # This is a model for a translation task, designed to translate text. # We use it to translate any non-English text into English, so the classifier can then classify the emotions. translator = pipeline(task="translation", model="facebook/nllb-200-distilled-600M") languages = { "English": "eng_Latn", "French": "fra_Latn", "Arabic": "arb_Arab", "Spanish": "spa_Latn", "German": "deu_Latn", "Chinese (Simplified)": "zho_Hans", "Hindi": "hin_Deva" } # prepare openAI client with our api key env_values = dotenv_values("./app.env") client = OpenAI( api_key= env_values['OPENAI_API_KEY'],) # Create a DataFrame to store user entries and perform analysis. structure = { 'Date': [], 'Text': [], 'Mood': [] } df = pd.DataFrame(structure) # Take the text and its source language, translate it to English, so that the classifier can perform the task. def translator_text(text, src_lang): translation = translator(text, src_lang=src_lang, tgt_lang="eng_Latn") return translation[0]['translation_text'] # Take all the inputs from the user, including the mood (result from the classifier), and append them to the DataFrame. def appender(date, text, mood): global df new_row = pd.DataFrame({'Date': [date], 'Text': [text], 'Mood': [mood]}) df = pd.concat([df, new_row], ignore_index=True) def main(date, src_lang, text): # First: Translate the text to English if it is not already in English. if src_lang!= 'English': text = translator_text(text, languages[src_lang]) # Second : Classify the text mood = classifier(text)[0]['label'] # Third : Show a message to the user depending on how they feel. chat_completion = client.chat.completions.create( messages=[ { "role": "user", "content": f"I feel{mood}, can you tell me a message, without any introductory phrase, just the message itself.", } ], model="gpt-3.5-turbo", ) # Finally : Save to DataFrame appender(date, text, mood) #Highlighted the output utilizing 'HighlightedText' in gradio highlighted_mood = [(f"Today you're feeling", mood)] return highlighted_mood, chat_completion.choices[0].message.content #Interface demo = gr.Interface( fn=main, inputs=[gr.Textbox(label="Enter Date (YYYY-MM-DD)"), gr.Dropdown(choices=list(languages.keys()),label="Select a Language",value="English"), gr.Textbox(label="What's happened today?")], outputs=[gr.HighlightedText(label="Mood"), gr.Textbox(label="Message")], title = "Daily Journal", description=( "Capture your daily experiences, reflections, and insights in a personal journal.\n" "Log and monitor your mood daily to identify patterns and trends over time.\n" "Get inspirational or motivational messages each day." ), theme=gr.themes.Soft() # theme form gradio documentation ) demo.launch(debug=True)