Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import torch | |
from free_lunch_utils import register_free_upblock2d, register_free_crossattn_upblock2d | |
from pipeline_freescale import StableDiffusionXLPipeline | |
from pipeline_freescale_turbo import StableDiffusionXLPipeline_Turbo | |
dtype = torch.float16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_ckpt = "stabilityai/stable-diffusion-xl-base-1.0" | |
model_ckpt_turbo = "stabilityai/sdxl-turbo" | |
pipe = StableDiffusionXLPipeline.from_pretrained(model_ckpt, torch_dtype=dtype).to(device) | |
pipe_turbo = StableDiffusionXLPipeline_Turbo.from_pretrained(model_ckpt_turbo, torch_dtype=dtype).to(device) | |
register_free_upblock2d(pipe, b1=1.1, b2=1.2, s1=0.6, s2=0.4) | |
register_free_crossattn_upblock2d(pipe, b1=1.1, b2=1.2, s1=0.6, s2=0.4) | |
register_free_upblock2d(pipe_turbo, b1=1.1, b2=1.2, s1=0.6, s2=0.4) | |
register_free_crossattn_upblock2d(pipe_turbo, b1=1.1, b2=1.2, s1=0.6, s2=0.4) | |
torch.cuda.empty_cache() | |
def infer_gpu_part(seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, restart_steps): | |
generator = torch.Generator(device='cuda') | |
generator = generator.manual_seed(seed) | |
result = pipe(prompt, negative_prompt=negative_prompt, generator=generator, | |
num_inference_steps=ddim_steps, guidance_scale=guidance_scale, | |
resolutions_list=resolutions_list, fast_mode=fast_mode, cosine_scale=cosine_scale, | |
restart_steps=restart_steps, | |
).images[0] | |
return result | |
def infer_gpu_part_turbo(seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, restart_steps): | |
generator = torch.Generator(device='cuda') | |
generator = generator.manual_seed(seed) | |
result = pipe_turbo(prompt, negative_prompt=negative_prompt, generator=generator, | |
num_inference_steps=ddim_steps, guidance_scale=guidance_scale, | |
resolutions_list=resolutions_list, fast_mode=fast_mode, cosine_scale=cosine_scale, | |
restart_steps=restart_steps, | |
).images[0] | |
return result | |
def infer(prompt, output_size, ddim_steps, guidance_scale, cosine_scale, seed, options, negative_prompt): | |
print(prompt) | |
print(negative_prompt) | |
disable_turbo = 'Disable Turbo' in options | |
if disable_turbo: | |
fast_mode = True | |
if output_size == "2048 x 2048": | |
resolutions_list = [[1024, 1024], | |
[2048, 2048]] | |
elif output_size == "1024 x 2048": | |
resolutions_list = [[512, 1024], | |
[1024, 2048]] | |
elif output_size == "2048 x 1024": | |
resolutions_list = [[1024, 512], | |
[2048, 1024]] | |
restart_steps = [int(ddim_steps * 0.3)] | |
result = infer_gpu_part(seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, restart_steps) | |
else: | |
fast_mode = False | |
if output_size == "2048 x 2048": | |
resolutions_list = [[512, 512], | |
[1024, 1024], | |
[2048, 2048]] | |
elif output_size == "1024 x 2048": | |
resolutions_list = [[256, 512], | |
[512, 1024], | |
[1024, 2048]] | |
elif output_size == "2048 x 1024": | |
resolutions_list = [[512, 256], | |
[1024, 512], | |
[2048, 1024]] | |
restart_steps = [int(ddim_steps * 0.5)] * 2 | |
result = infer_gpu_part_turbo(seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, restart_steps) | |
return result | |
examples = [ | |
["A cute and adorable fluffy puppy wearing a witch hat in a Halloween autumn evening forest, falling autumn leaves, brown acorns on the ground, Halloween pumpkins spiderwebs, bats, and a witch’s broom.",], | |
["Brunette pilot girl in a snowstorm, full body, moody lighting, intricate details, depth of field, outdoors, Fujifilm XT3, RAW, 8K UHD, film grain, Unreal Engine 5, ray tracing.",], | |
["A panda walking and munching bamboo in a bamboo forest.",], | |
] | |
css = """ | |
#col-container {max-width: 768px; margin-left: auto; margin-right: auto;} | |
""" | |
def mode_update(options): | |
if 'Disable Turbo' in options: | |
return [gr.Slider(minimum=5, | |
maximum=60, | |
value=50), | |
gr.Slider(minimum=1.0, | |
maximum=20.0, | |
value=7.5), | |
gr.Row(visible=True)] | |
else: | |
return [gr.Slider(minimum=2, | |
maximum=6, | |
value=4), | |
gr.Slider(minimum=0.0, | |
maximum=1.0, | |
value=0.0), | |
gr.Row(visible=False)] | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown( | |
""" | |
<h1 style="text-align: center;">FreeScale (unleash the resolution of SDXL)</h1> | |
<p style="text-align: center;"> | |
FreeScale: Unleashing the Resolution of Diffusion Models via Tuning-Free Scale Fusion | |
</p> | |
<p style="text-align: center;"> | |
<a href="https://arxiv.org/abs/2412.09626" target="_blank"><b>[arXiv]</b></a> | |
<a href="http://haonanqiu.com/projects/FreeScale.html" target="_blank"><b>[Project Page]</b></a> | |
<a href="https://github.com/ali-vilab/FreeScale" target="_blank"><b>[Code]</b></a> | |
</p> | |
""" | |
) | |
prompt_in = gr.Textbox(label="Prompt", placeholder="A panda walking and munching bamboo in a bamboo forest.") | |
with gr.Row(): | |
with gr.Accordion('Advanced Settings', open=False): | |
with gr.Row(): | |
output_size = gr.Dropdown(["2048 x 2048", "1024 x 2048", "2048 x 1024"], value="2048 x 2048", label="Output Size (H x W)", info="Due to GPU constraints, run the demo locally for higher resolutions.") | |
options = gr.CheckboxGroup(['Disable Turbo'], label="Options", info="Disable Turbo will get better results but cost more time.") | |
with gr.Row(): | |
ddim_steps = gr.Slider(label='DDIM Steps', | |
minimum=2, | |
maximum=6, | |
step=1, | |
value=4) | |
guidance_scale = gr.Slider(label='Guidance Scale (Disabled in Turbo)', | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=0.0) | |
with gr.Row(): | |
cosine_scale = gr.Slider(label='Cosine Scale', | |
minimum=0, | |
maximum=10, | |
step=0.1, | |
value=2.0) | |
seed = gr.Slider(label='Random Seed', | |
minimum=0, | |
maximum=10000, | |
step=1, | |
value=111) | |
with gr.Row() as row_neg: | |
negative_prompt = gr.Textbox(label='Negative Prompt', value='blurry, ugly, duplicate, poorly drawn, deformed, mosaic', visible=False) | |
options.change(mode_update, options, [ddim_steps, guidance_scale, row_neg]) | |
submit_btn = gr.Button("Generate", variant='primary') | |
image_result = gr.Image(label="Image Output") | |
gr.Examples(examples=examples, inputs=[prompt_in, output_size, ddim_steps, guidance_scale, cosine_scale, seed, options, negative_prompt]) | |
submit_btn.click(fn=infer, | |
inputs=[prompt_in, output_size, ddim_steps, guidance_scale, cosine_scale, seed, options, negative_prompt], | |
outputs=[image_result], | |
api_name="freescalehf") | |
if __name__ == "__main__": | |
demo.queue(max_size=8).launch() |