import gradio as gr import spaces import torch from free_lunch_utils import register_free_upblock2d, register_free_crossattn_upblock2d from pipeline_freescale import StableDiffusionXLPipeline from pipeline_freescale_turbo import StableDiffusionXLPipeline_Turbo dtype = torch.float16 device = "cuda" if torch.cuda.is_available() else "cpu" model_ckpt = "stabilityai/stable-diffusion-xl-base-1.0" model_ckpt_turbo = "stabilityai/sdxl-turbo" pipe = StableDiffusionXLPipeline.from_pretrained(model_ckpt, torch_dtype=dtype).to(device) pipe_turbo = StableDiffusionXLPipeline_Turbo.from_pretrained(model_ckpt_turbo, torch_dtype=dtype).to(device) register_free_upblock2d(pipe, b1=1.1, b2=1.2, s1=0.6, s2=0.4) register_free_crossattn_upblock2d(pipe, b1=1.1, b2=1.2, s1=0.6, s2=0.4) register_free_upblock2d(pipe_turbo, b1=1.1, b2=1.2, s1=0.6, s2=0.4) register_free_crossattn_upblock2d(pipe_turbo, b1=1.1, b2=1.2, s1=0.6, s2=0.4) torch.cuda.empty_cache() @spaces.GPU(duration=120) def infer_gpu_part(seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, restart_steps): generator = torch.Generator(device='cuda') generator = generator.manual_seed(seed) result = pipe(prompt, negative_prompt=negative_prompt, generator=generator, num_inference_steps=ddim_steps, guidance_scale=guidance_scale, resolutions_list=resolutions_list, fast_mode=fast_mode, cosine_scale=cosine_scale, restart_steps=restart_steps, ).images[0] return result @spaces.GPU(duration=30) def infer_gpu_part_turbo(seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, restart_steps): generator = torch.Generator(device='cuda') generator = generator.manual_seed(seed) result = pipe_turbo(prompt, negative_prompt=negative_prompt, generator=generator, num_inference_steps=ddim_steps, guidance_scale=guidance_scale, resolutions_list=resolutions_list, fast_mode=fast_mode, cosine_scale=cosine_scale, restart_steps=restart_steps, ).images[0] return result def infer(prompt, output_size, ddim_steps, guidance_scale, cosine_scale, seed, options, negative_prompt): print(prompt) print(negative_prompt) disable_turbo = 'Disable Turbo' in options if disable_turbo: fast_mode = True if output_size == "2048 x 2048": resolutions_list = [[1024, 1024], [2048, 2048]] elif output_size == "1024 x 2048": resolutions_list = [[512, 1024], [1024, 2048]] elif output_size == "2048 x 1024": resolutions_list = [[1024, 512], [2048, 1024]] restart_steps = [int(ddim_steps * 0.3)] result = infer_gpu_part(seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, restart_steps) else: fast_mode = False if output_size == "2048 x 2048": resolutions_list = [[512, 512], [1024, 1024], [2048, 2048]] elif output_size == "1024 x 2048": resolutions_list = [[256, 512], [512, 1024], [1024, 2048]] elif output_size == "2048 x 1024": resolutions_list = [[512, 256], [1024, 512], [2048, 1024]] restart_steps = [int(ddim_steps * 0.5)] * 2 result = infer_gpu_part_turbo(seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, restart_steps) return result examples = [ ["A cute and adorable fluffy puppy wearing a witch hat in a Halloween autumn evening forest, falling autumn leaves, brown acorns on the ground, Halloween pumpkins spiderwebs, bats, and a witch’s broom.",], ["Brunette pilot girl in a snowstorm, full body, moody lighting, intricate details, depth of field, outdoors, Fujifilm XT3, RAW, 8K UHD, film grain, Unreal Engine 5, ray tracing.",], ["A panda walking and munching bamboo in a bamboo forest.",], ] css = """ #col-container {max-width: 768px; margin-left: auto; margin-right: auto;} """ def mode_update(options): if 'Disable Turbo' in options: return [gr.Slider(minimum=5, maximum=60, value=50), gr.Slider(minimum=1.0, maximum=20.0, value=7.5), gr.Row(visible=True)] else: return [gr.Slider(minimum=2, maximum=6, value=4), gr.Slider(minimum=0.0, maximum=1.0, value=0.0), gr.Row(visible=False)] with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown( """
FreeScale: Unleashing the Resolution of Diffusion Models via Tuning-Free Scale Fusion
""" ) prompt_in = gr.Textbox(label="Prompt", placeholder="A panda walking and munching bamboo in a bamboo forest.") with gr.Row(): with gr.Accordion('Advanced Settings', open=False): with gr.Row(): output_size = gr.Dropdown(["2048 x 2048", "1024 x 2048", "2048 x 1024"], value="2048 x 2048", label="Output Size (H x W)", info="Due to GPU constraints, run the demo locally for higher resolutions.") options = gr.CheckboxGroup(['Disable Turbo'], label="Options", info="Disable Turbo will get better results but cost more time.") with gr.Row(): ddim_steps = gr.Slider(label='DDIM Steps', minimum=2, maximum=6, step=1, value=4) guidance_scale = gr.Slider(label='Guidance Scale (Disabled in Turbo)', minimum=0.0, maximum=1.0, step=0.1, value=0.0) with gr.Row(): cosine_scale = gr.Slider(label='Cosine Scale', minimum=0, maximum=10, step=0.1, value=2.0) seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=111) with gr.Row() as row_neg: negative_prompt = gr.Textbox(label='Negative Prompt', value='blurry, ugly, duplicate, poorly drawn, deformed, mosaic', visible=False) options.change(mode_update, options, [ddim_steps, guidance_scale, row_neg]) submit_btn = gr.Button("Generate", variant='primary') image_result = gr.Image(label="Image Output") gr.Examples(examples=examples, inputs=[prompt_in, output_size, ddim_steps, guidance_scale, cosine_scale, seed, options, negative_prompt]) submit_btn.click(fn=infer, inputs=[prompt_in, output_size, ddim_steps, guidance_scale, cosine_scale, seed, options, negative_prompt], outputs=[image_result], api_name="freescalehf") if __name__ == "__main__": demo.queue(max_size=8).launch()