Spaces:
Sleeping
Sleeping
File size: 1,097 Bytes
f41f56e ac462f6 29a6b30 f41f56e dc2591a f41f56e 29a6b30 dd71470 29a6b30 dc2591a f41f56e dc2591a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
from transformers import AutoModelForCausalLM, AutoTokenizer
import streamlit as st
from transformers import AutoTokenizer, AutoModelWithLMHead
import torch
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = "cpu"
tokenizer = AutoTokenizer.from_pretrained("salesken/content_generation_from_phrases")
model = AutoModelWithLMHead.from_pretrained("salesken/content_generation_from_phrases").to(device)
input_query=st.text_input("Enter the Blog Title")
query = "<|startoftext|> " +"Create a blog about "+ input_query + " ~~"
input_ids = tokenizer.encode(query.lower(), return_tensors='pt').to(device)
sample_outputs = model.generate(input_ids,
do_sample=True,
num_beams=1,
max_length=4096,
temperature=0.9,
top_k = 30,
num_return_sequences=1)
r = tokenizer.decode(sample_outputs[0], skip_special_tokens=True).split('||')[0]
r = r.split(' ~~ ')[1]
st.write(r)
|