blog / app.py
Mo-alaa's picture
Update app.py
3776948
raw
history blame
3.94 kB
from diffusers import StableDiffusionPipeline
import torch
from langchain.chains import LLMChain
from langchain.llms import HuggingFaceHub
from langchain.prompts import PromptTemplate
import requests
import streamlit as st
import json
# Load existing ideas from a file
def load_ideas():
try:
with open("ideas.json", "r") as file:
ideas = json.load(file)
except FileNotFoundError:
ideas = []
return ideas
# Save ideas to a file
def save_ideas(ideas):
with open("ideas.json", "w") as file:
json.dump(ideas, file)
# Function to generate content
@torch.no_grad()
def generate_content(topic):
hub_llm = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta")
prompt = PromptTemplate(
input_variables=['keyword'],
template="""
Write a comprehensive article about {keyword} covering the following aspects:
Introduction, History and Background, Key Concepts and Terminology, Use Cases and Applications, Benefits and Drawbacks, Future Outlook, Conclusion
Ensure that the article is well-structured, informative, and at least 1500 words long. Use SEO best practices for content optimization.
"""
)
hub_chain = LLMChain(prompt=prompt, llm=hub_llm, verbose=True)
content = hub_chain.run(topic)
subheadings = [
"Introduction",
"History and Background",
"Key Concepts and Terminology",
"Use Cases and Applications",
"Benefits and Drawbacks",
"Future Outlook",
"Conclusion",
]
for subheading in subheadings:
if (subheading + ":") in content:
content = content.replace(subheading + ":", "## " + subheading + "\n")
elif subheading in content:
content = content.replace(subheading, "## " + subheading + "\n")
return content
# generate image
import io
from PIL import Image
# Function to generate an image using the pre-created or newly created pipeline
@torch.no_grad()
def generate_image(topic):
API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
headers = {"Authorization": "Bearer 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"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.content
image_bytes = query({
"inputs": f"A blog banner about {topic}",
})
# You can access the image with PIL.Image for example
image = Image.open(io.BytesIO(image_bytes))
return image
# Streamlit app
st.title("Blog Generator")
# Input and button
topic = st.text_input("Enter Title for the blog")
button_clicked = st.button("Create blog!")
st.subheader(topic)
# Load existing ideas
existing_ideas = load_ideas()
st.sidebar.header("Previous Ideas:")
# Display existing ideas in the sidebar
keys = list(set([key for idea in existing_ideas for key in idea.keys()]))
if topic in keys:
index = keys.index(topic)
selected_idea = st.sidebar.selectbox("Select Idea", keys, key=f"selectbox{topic}", index=index)
# Display content and image for the selected idea
selected_idea_from_list = next((idea for idea in existing_ideas if selected_idea in idea), None)
st.markdown(selected_idea_from_list[selected_idea]["content"])
st.image(selected_idea_from_list[selected_idea]["image_path"])
else:
index = 0
# Handle button click
if button_clicked:
# Generate content and update existing ideas
content, image = generate_content(topic),generate_image(topic)
if image:
image_path = f"{topic}.png"
existing_ideas.append({topic: {"content": content, "image_path": image_path}})
save_ideas(existing_ideas)
# Update keys and selected idea in the sidebar
keys = list(set([key for idea in existing_ideas for key in idea.keys()]))
selected_idea = st.sidebar.selectbox("Select Idea", keys, key=f"selectbox{topic}", index=keys.index(topic))
st.image(image)
st.markdown(content)