Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,8 @@ from langchain.chains import LLMChain
|
|
2 |
from langchain.llms import HuggingFaceHub
|
3 |
from langchain.prompts import PromptTemplate
|
4 |
import streamlit as st
|
5 |
-
|
|
|
6 |
topic = st.text_input("Enter Topic for the bog")
|
7 |
hub_llm = HuggingFaceHub(repo_id ="HuggingFaceH4/zephyr-7b-beta")
|
8 |
prompt = PromptTemplate(
|
@@ -12,5 +13,28 @@ prompt = PromptTemplate(
|
|
12 |
Introduction, History and Background, Key Concepts and Terminology, Use Cases and Applications, Benefits and Drawbacks, Future Outlook, Conclusion
|
13 |
Ensure that the article is well-structured, informative, and at least 1500 words long. Use SEO best practices for content optimization.
|
14 |
""")
|
15 |
-
|
16 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from langchain.llms import HuggingFaceHub
|
3 |
from langchain.prompts import PromptTemplate
|
4 |
import streamlit as st
|
5 |
+
HUGGINGFACEHUB_API_TOKEN = st.secrets("HUGGINGFACEHUB_API_TOKEN")
|
6 |
+
|
7 |
topic = st.text_input("Enter Topic for the bog")
|
8 |
hub_llm = HuggingFaceHub(repo_id ="HuggingFaceH4/zephyr-7b-beta")
|
9 |
prompt = PromptTemplate(
|
|
|
13 |
Introduction, History and Background, Key Concepts and Terminology, Use Cases and Applications, Benefits and Drawbacks, Future Outlook, Conclusion
|
14 |
Ensure that the article is well-structured, informative, and at least 1500 words long. Use SEO best practices for content optimization.
|
15 |
""")
|
16 |
+
|
17 |
+
button_clicked = st.button("Create blog!")
|
18 |
+
if button_clicked:
|
19 |
+
hub_chain = LLMChain(prompt=prompt,llm = hub_llm,verbose=True)
|
20 |
+
|
21 |
+
content = hub_chain.run(topic)
|
22 |
+
|
23 |
+
|
24 |
+
subheadings = [
|
25 |
+
"Introduction:",
|
26 |
+
"History and Background:",
|
27 |
+
"Key Concepts and Terminology:",
|
28 |
+
"Use Cases and Applications:",
|
29 |
+
"Benefits and Drawbacks:",
|
30 |
+
"Future Outlook:",
|
31 |
+
"Conclusion:"
|
32 |
+
]
|
33 |
+
organized_content = ""
|
34 |
+
|
35 |
+
for subheading in subheadings:
|
36 |
+
if subheading in content:
|
37 |
+
content = content.replace(subheading,"## "+subheading+"\n")
|
38 |
+
|
39 |
+
|
40 |
+
st.markdown(content)
|