from transformers import AutoModelForCausalLM, AutoTokenizer import streamlit as st from transformers import AutoTokenizer, AutoModelWithLMHead import torch if torch.cuda.is_available(): device = torch.device("cuda") else: device = "cpu" tokenizer = AutoTokenizer.from_pretrained("salesken/content_generation_from_phrases") model = AutoModelWithLMHead.from_pretrained("salesken/content_generation_from_phrases").to(device) input_query=["data science beginner"] query = "<|startoftext|> " + input_query[0] + " ~~" input_ids = tokenizer.encode(query.lower(), return_tensors='pt').to(device) sample_outputs = model.generate(input_ids, do_sample=True, num_beams=1, max_length=256, temperature=0.9, top_k = 30, num_return_sequences=100) content = [] for i in range(len(sample_outputs)): r = tokenizer.decode(sample_outputs[i], skip_special_tokens=True).split('||')[0] r = r.split(' ~~ ')[1] if r not in content: content.append(r) st.write(content)