import gradio as gr import numpy as np import pandas as pd from fastai.learner import load_learner learn = load_learner("model.pkl") dados = pd.read_csv('valid.csv') ids = dados['user'].unique() ids_list = list(map(str, ids.tolist())) ratings = pd.read_csv('ratings.csv') def top5(user): items = pd.Series(learn.dls.classes['title']).unique() clas_items = ratings.loc[(ratings['user'] == user) & (ratings['rating'] > 0), 'title'] no_clas_items = np.setdiff1d(items, clas_items) df = pd.DataFrame({'user': [user]*len(no_clas_items), 'title': no_clas_items}) preds,_ = learn.get_preds(dl=learn.dls.test_dl(df)) df['prediction'] = preds.numpy() top_5 = df.nlargest(5, 'prediction') return '\n'.join(top_5['title'].tolist()) iface = gr.Interface(fn=top5, inputs=gr.Dropdown(choices=ids_list), outputs="text") iface.launch(share=True)