Spaces:
Sleeping
Sleeping
File size: 1,926 Bytes
1341b77 0744724 1341b77 0744724 1341b77 0744724 1341b77 f8d166f 1341b77 e00628f 1341b77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
import gradio as gr
import torch
from torch import tensor
from torch.nn import functional as F
from sklearn.preprocessing import LabelEncoder
import pandas as pd
label_encoder = LabelEncoder()
coeffs = torch.load('fakejobposts.pth')
indep_cols = ['job_title', 'company_name', 'company_desc', 'job_desc',
'job_requirement', 'salary', 'location', 'employment_type',
'department']
def calc_preds(coeffs, indeps):
layers, consts = coeffs
n = len(layers)
res = indeps
for i, l in enumerate(layers):
res = res @ l + consts[i]
if i != n-1:
res = F.relu(res)
if torch.sigmoid(res) > 0.5:
return 'Real Job Post'
else:
return 'Fake Job Post'
# return torch.sigmoid(res)
def preprocess_input(input_data):
df = pd.DataFrame([input_data], columns=indep_cols)
for column in df.columns:
if df[column].dtype == 'O': # 'O' stands for object type (string)
df[column] = label_encoder.fit_transform(df[column])
else:
df[column] = df[column].astype(float)
t_indep = tensor(df[indep_cols].values, dtype=torch.float)
vals, indices = t_indep.max(dim=0)
t_indep = t_indep / vals
return t_indep
def main(inputs):
t_indep = preprocess_input(inputs)
return calc_preds(coeffs, t_indep)
def main(job_title, company_name, company_desc, job_desc,
job_requirement, salary, location, employment_type,
department):
inputs = [job_title, company_name, company_desc, job_desc,
job_requirement, salary, location, employment_type,
department]
t_indep = preprocess_input(inputs)
return calc_preds(coeffs, t_indep)
iface = gr.Interface(
fn=main,
inputs="text",
outputs="text",
title="Real/Fake Job Posting Identifier",
description="Identifies job posts as real or fake."
)
iface.launch()
|