import gradio as gr import torch from torch import tensor from torch.nn import functional as F from sklearn.preprocessing import LabelEncoder import pandas as pd label_encoder = LabelEncoder() coeffs = torch.load('fakejobposts.pth') indep_cols = ['job_title', 'company_name', 'company_desc', 'job_desc', 'job_requirement', 'salary', 'location', 'employment_type', 'department'] def calc_preds(coeffs, indeps): layers, consts = coeffs n = len(layers) res = indeps for i, l in enumerate(layers): res = res @ l + consts[i] if i != n-1: res = F.relu(res) if torch.sigmoid(res) > 0.5: return 'Real Job Post' else: return 'Fake Job Post' def main(job_title, company_name, company_desc, job_desc, job_requirement, salary, location, employment_type, department): df = pd.DataFrame(columns=indep_cols) df.loc[0] = [job_title, company_name, company_desc, job_desc, job_requirement, salary, location, employment_type, department] for column in df.columns: df[column] = label_encoder.fit_transform(df[column]) t_indep = tensor(df[indep_cols].values, dtype=torch.float) vals,indices = t_indep.max(dim=0) t_indep = t_indep / vals return calc_preds(coeffs, t_indep) iface = gr.Interface( fn=main, inputs=[gr.Textbox(label="Job title"), gr.Textbox(label="Company name"), gr.Textbox(label="Company description"), gr.Textbox(label="Job description"), gr.Textbox(label="Job Requirements"), gr.Textbox(label="Salary"), gr.Textbox(label="Location"), gr.Textbox(label="Employment Type"), gr.Textbox(label="Department")], outputs="text", title="Job posting identifier", description="Identifies job posts as real or fake" ) iface.launch(share=True)