Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import faiss
|
4 |
+
import pickle
|
5 |
+
import requests
|
6 |
+
from bs4 import BeautifulSoup
|
7 |
+
from urllib.parse import urljoin, urlparse
|
8 |
+
from sentence_transformers import SentenceTransformer
|
9 |
+
from huggingface_hub import InferenceClient, HfApi
|
10 |
+
|
11 |
+
# Hugging Face Space persistence
|
12 |
+
HF_REPO_ID = "MoslemBot/kajibuku" # e.g., "username/your-space-name"
|
13 |
+
HF_API_TOKEN = os.getenv("HF_TOKEN")
|
14 |
+
api = HfApi()
|
15 |
+
|
16 |
+
def upload_to_hub(local_path, remote_path):
|
17 |
+
api.upload_file(
|
18 |
+
path_or_fileobj=local_path,
|
19 |
+
path_in_repo=remote_path,
|
20 |
+
repo_id=HF_REPO_ID,
|
21 |
+
repo_type="space",
|
22 |
+
token=HF_API_TOKEN
|
23 |
+
)
|
24 |
+
print(f"β
Uploaded to Hub: {remote_path}")
|
25 |
+
|
26 |
+
# Initialize embedder and LLM client
|
27 |
+
embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
28 |
+
llm = InferenceClient(token=os.getenv("HF_TOKEN"))
|
29 |
+
|
30 |
+
DATA_DIR = "data"
|
31 |
+
os.makedirs(DATA_DIR, exist_ok=True)
|
32 |
+
|
33 |
+
def extract_links_and_text(base_url, max_depth=1, visited=None):
|
34 |
+
if visited is None:
|
35 |
+
visited = set()
|
36 |
+
if base_url in visited or max_depth < 0:
|
37 |
+
return ""
|
38 |
+
|
39 |
+
visited.add(base_url)
|
40 |
+
print(f"π Crawling: {base_url}")
|
41 |
+
try:
|
42 |
+
response = requests.get(base_url, timeout=10)
|
43 |
+
response.raise_for_status()
|
44 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
45 |
+
page_text = ' '.join([p.get_text() for p in soup.find_all(['p', 'h1', 'h2', 'h3'])])
|
46 |
+
|
47 |
+
links = set()
|
48 |
+
for a in soup.find_all("a", href=True):
|
49 |
+
href = a["href"]
|
50 |
+
full_url = urljoin(base_url, href)
|
51 |
+
if urlparse(full_url).netloc == urlparse(base_url).netloc:
|
52 |
+
links.add(full_url)
|
53 |
+
|
54 |
+
for link in links:
|
55 |
+
page_text += "\n" + extract_links_and_text(link, max_depth=max_depth-1, visited=visited)
|
56 |
+
return page_text
|
57 |
+
except Exception as e:
|
58 |
+
print(f"β Failed to fetch {base_url}: {e}")
|
59 |
+
return ""
|
60 |
+
|
61 |
+
# Save webpage content and index it
|
62 |
+
def save_webpage(url, title):
|
63 |
+
folder = os.path.join(DATA_DIR, title.strip())
|
64 |
+
if os.path.exists(folder):
|
65 |
+
return f"'{title}' already exists. Use a different title."
|
66 |
+
|
67 |
+
os.makedirs(folder, exist_ok=True)
|
68 |
+
|
69 |
+
# Extract text from webpage and its linked pages
|
70 |
+
full_text = extract_links_and_text(url, max_depth=1)
|
71 |
+
|
72 |
+
if not full_text.strip():
|
73 |
+
return "β No text extracted from the webpage."
|
74 |
+
|
75 |
+
# Chunk text
|
76 |
+
chunks = [full_text[i:i+500] for i in range(0, len(full_text), 500)]
|
77 |
+
|
78 |
+
# Embed and index
|
79 |
+
embeddings = embedder.encode(chunks)
|
80 |
+
|
81 |
+
print("Embeddings shape:", embeddings.shape)
|
82 |
+
if len(embeddings.shape) != 2:
|
83 |
+
raise ValueError(f"Expected 2D embeddings, got shape {embeddings.shape}")
|
84 |
+
|
85 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
86 |
+
index.add(embeddings)
|
87 |
+
|
88 |
+
# Save index and chunks locally
|
89 |
+
index_path = os.path.join(folder, "index.faiss")
|
90 |
+
chunks_path = os.path.join(folder, "chunks.pkl")
|
91 |
+
faiss.write_index(index, index_path)
|
92 |
+
with open(chunks_path, "wb") as f:
|
93 |
+
pickle.dump(chunks, f)
|
94 |
+
|
95 |
+
# Upload to hub
|
96 |
+
upload_to_hub(index_path, f"data/{title}/index.faiss")
|
97 |
+
upload_to_hub(chunks_path, f"data/{title}/chunks.pkl")
|
98 |
+
|
99 |
+
return f"β
Saved and indexed '{title}', and uploaded to Hub. Please reload (refresh) the page."
|
100 |
+
|
101 |
+
# Return all available webpage titles
|
102 |
+
def list_titles():
|
103 |
+
print(f"Listing in: {DATA_DIR} β {os.listdir(DATA_DIR)}")
|
104 |
+
return [d for d in os.listdir(DATA_DIR) if os.path.isdir(os.path.join(DATA_DIR, d))]
|
105 |
+
|
106 |
+
# Ask question using selected webpages as context
|
107 |
+
def ask_question(message, history, selected_titles):
|
108 |
+
if not selected_titles:
|
109 |
+
return "β Please select at least one webpage."
|
110 |
+
|
111 |
+
combined_answer = ""
|
112 |
+
for title in selected_titles:
|
113 |
+
folder = os.path.join(DATA_DIR, title)
|
114 |
+
try:
|
115 |
+
index = faiss.read_index(os.path.join(folder, "index.faiss"))
|
116 |
+
with open(os.path.join(folder, "chunks.pkl"), "rb") as f:
|
117 |
+
chunks = pickle.load(f)
|
118 |
+
|
119 |
+
q_embed = embedder.encode([message])
|
120 |
+
D, I = index.search(q_embed, k=3)
|
121 |
+
context = "\n".join([chunks[i] for i in I[0]])
|
122 |
+
|
123 |
+
response = llm.chat_completion(
|
124 |
+
messages=[
|
125 |
+
{"role": "system", "content": "You are a helpful assistant. Answer based only on the given context."},
|
126 |
+
{"role": "user", "content": f"Context:\n{context}\n\nQuestion: {message}"}
|
127 |
+
],
|
128 |
+
model="deepseek-ai/DeepSeek-R1-0528",
|
129 |
+
max_tokens=2048,
|
130 |
+
)
|
131 |
+
|
132 |
+
response = response.choices[0].message["content"]
|
133 |
+
combined_answer += f"**{title}**:\n{response.strip()}\n\n"
|
134 |
+
except Exception as e:
|
135 |
+
combined_answer += f"β οΈ Error with {title}: {str(e)}\n\n"
|
136 |
+
|
137 |
+
return combined_answer.strip()
|
138 |
+
|
139 |
+
# Gradio UI
|
140 |
+
with gr.Blocks(css="body { background-color: white !important; }") as demo:
|
141 |
+
with gr.Tab("π Index Web Page"):
|
142 |
+
url = gr.Textbox(label="Web Page URL")
|
143 |
+
title = gr.Textbox(label="Title for Web Page")
|
144 |
+
index_btn = gr.Button("Fetch and Index (with crawl)")
|
145 |
+
index_status = gr.Textbox(label="Status")
|
146 |
+
index_btn.click(fn=save_webpage, inputs=[url, title], outputs=index_status)
|
147 |
+
|
148 |
+
with gr.Tab("π¬ Chat with Web Pages"):
|
149 |
+
page_selector = gr.CheckboxGroup(label="Select Indexed Pages", choices=list_titles())
|
150 |
+
refresh_btn = gr.Button("π Refresh List")
|
151 |
+
refresh_btn.click(fn=list_titles, outputs=page_selector)
|
152 |
+
chat = gr.ChatInterface(fn=ask_question, additional_inputs=[page_selector])
|
153 |
+
|
154 |
+
demo.launch()
|