Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
+
import json
|
4 |
+
|
5 |
+
# Load words and languages from JSON files
|
6 |
+
with open("top_500_quran_lemmas_fixed.json", encoding="utf-8") as f:
|
7 |
+
word_list = json.load(f)
|
8 |
+
|
9 |
+
with open("language_list.json", encoding="utf-8") as f:
|
10 |
+
language_list = json.load(f)
|
11 |
+
|
12 |
+
# Format dropdown options
|
13 |
+
word_options = [f"{word['text']} ({word['english']})" for word in word_list]
|
14 |
+
language_options = [f"{lang['name']} ({lang['code']})" for lang in language_list]
|
15 |
+
|
16 |
+
# Load DeepSeek-V3 model
|
17 |
+
model_id = "deepseek-ai/DeepSeek-V3"
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", device_map="auto")
|
20 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
21 |
+
|
22 |
+
# Generate prompt
|
23 |
+
def create_prompt(word_entry, language_code):
|
24 |
+
prompt = f"""
|
25 |
+
You are a friendly Quranic AI assistant.
|
26 |
+
|
27 |
+
The word is: {word_entry['text']} ({word_entry['english']})
|
28 |
+
|
29 |
+
Please provide the following in simple, easy-to-understand language, translated into {language_code}:
|
30 |
+
1. Translation of the word.
|
31 |
+
2. Its root word and any related words (derivatives).
|
32 |
+
3. Where it appears in the Qur'an — list the Surah and Ayah numbers.
|
33 |
+
4. Give an explanation of each appearance (based on context), in {language_code}.
|
34 |
+
|
35 |
+
Avoid technical terms. Make it feel like a helpful teacher explaining to a student.
|
36 |
+
"""
|
37 |
+
return prompt.strip()
|
38 |
+
|
39 |
+
# Function to call the model
|
40 |
+
def process(word_label, lang_label):
|
41 |
+
# Extract selected word data
|
42 |
+
selected_word = next((w for w in word_list if w['text'] in word_label), None)
|
43 |
+
language_code = lang_label.split("(")[-1].strip(")")
|
44 |
+
|
45 |
+
if not selected_word:
|
46 |
+
return "Word not found in list."
|
47 |
+
|
48 |
+
prompt = create_prompt(selected_word, language_code)
|
49 |
+
result = generator(prompt, max_new_tokens=800, do_sample=True, temperature=0.7)[0]["generated_text"]
|
50 |
+
|
51 |
+
return result.replace(prompt, "").strip()
|
52 |
+
|
53 |
+
# Gradio UI
|
54 |
+
with gr.Blocks() as demo:
|
55 |
+
gr.Markdown("## 📖 Quran Word Explorer with DeepSeek-V3")
|
56 |
+
with gr.Row():
|
57 |
+
word_input = gr.Dropdown(choices=word_options, label="Select a Quran Word")
|
58 |
+
lang_input = gr.Dropdown(choices=language_options, label="Select Language")
|
59 |
+
|
60 |
+
output = gr.Textbox(label="DeepSeek-V3 Output", lines=20)
|
61 |
+
run_btn = gr.Button("Get Info")
|
62 |
+
|
63 |
+
run_btn.click(fn=process, inputs=[word_input, lang_input], outputs=output)
|
64 |
+
|
65 |
+
demo.launch()
|