Spaces:
Runtime error
Runtime error
import os | |
os.system('pip install -v -e .') | |
import argparse | |
from typing import Dict, List | |
from gdino import GroundingDINOAPIWrapper, visualize | |
import gradio as gr | |
import numpy as np | |
import cv2 | |
def arg_parse(): | |
parser = argparse.ArgumentParser(description="Gradio Demo for T-Rex2") | |
parser.add_argument( | |
"--token", | |
type=str, | |
default='trex-huggingface-demo', | |
help="This token is only for gradio space. Please do not take it away for your own purpose!", | |
) | |
args = parser.parse_args() | |
return args | |
def resize_image_with_aspect_ratio(image: np.ndarray, min_size: int = 800, max_size: int = 1333) -> np.ndarray: | |
h, w = image.shape[:2] | |
aspect_ratio = w / h | |
# Determine the scaling factor based on the constraints | |
if h < w: | |
new_height = min_size | |
new_width = int(new_height * aspect_ratio) | |
if new_width > max_size: | |
new_width = max_size | |
new_height = int(new_width / aspect_ratio) | |
else: | |
new_width = min_size | |
new_height = int(new_width / aspect_ratio) | |
if new_height > max_size: | |
new_height = max_size | |
new_width = int(new_height * aspect_ratio) | |
# Resize the image | |
resized_image = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA) | |
return resized_image | |
def inference(image, prompt: str, return_mask: bool = False, return_score: bool = False) -> gr.Image: | |
# shrink image first to save computation | |
if return_mask: | |
image = resize_image_with_aspect_ratio(image, min_size=600, max_size=1000) | |
prompts = dict(image=image, prompt=prompt) | |
results = gdino.inference(prompts, return_mask=return_mask) | |
image_pil = visualize(image, results, return_mask=return_mask, draw_score=return_score) | |
return image_pil | |
args = arg_parse() | |
gdino = GroundingDINOAPIWrapper(args.token) | |
if __name__ == "__main__": | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as demo: | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(label="Input Image") | |
with gr.Column(): | |
output_image = gr.Image(label="Output Image") | |
with gr.Row(): | |
return_mask = gr.Checkbox(label="Return Mask") | |
return_score = gr.Checkbox(label="Return Score") | |
prompt = gr.Textbox(label="Prompt", placeholder="e.g., person.pigeon.tree") | |
run = gr.Button(value="Run") | |
with gr.Row(): | |
gr.Examples( | |
examples=[ | |
['asset/demo.jpg', 'person . pigeon . tree'], | |
['asset/demo2.jpeg', 'wireless walkie-talkie . life jacket . atlantic cod . man . vehicle . accessory . cell phone .'], | |
['asset/demo3.jpeg', 'wine rack . bottle . basket'], | |
['asset/demo4.jpeg', 'Mosque. golden dome. smaller domes. minarets. arched windows. white facade. cars. electrical lines. streetlights. trees. pedestrians. blue sky. shadows'], | |
['asset/demo5.jpeg', 'stately building. columns. sculptures. Spanish flag. clouds. blue sky. street. taxis. van. city bus. traffic lights. street lamps. road markings. pedestrians. sidewalk. traffic sign. palm trees'] | |
], | |
inputs=[input_image, prompt], | |
) | |
run.click(inference, inputs=[input_image, prompt, return_mask, return_score], outputs=output_image) | |
demo.launch(debug=True) |