File size: 1,303 Bytes
9bf4bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
_base_ = [
    '_base_dbnetpp_resnet50-dcnv2_fpnc.py',
    '../_base_/pretrain_runtime.py',
    '../_base_/datasets/synthtext.py',
    '../_base_/schedules/schedule_sgd_100k.py',
]

train_pipeline = [
    dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
    dict(
        type='LoadOCRAnnotations',
        with_bbox=True,
        with_polygon=True,
        with_label=True,
    ),
    dict(type='FixInvalidPolygon'),
    dict(
        type='TorchVisionWrapper',
        op='ColorJitter',
        brightness=32.0 / 255,
        saturation=0.5),
    dict(
        type='ImgAugWrapper',
        args=[['Fliplr', 0.5],
              dict(cls='Affine', rotate=[-10, 10]), ['Resize', [0.5, 3.0]]]),
    dict(type='RandomCrop', min_side_ratio=0.1),
    dict(type='Resize', scale=(640, 640), keep_ratio=True),
    dict(type='Pad', size=(640, 640)),
    dict(
        type='PackTextDetInputs',
        meta_keys=('img_path', 'ori_shape', 'img_shape'))
]

synthtext_textdet_train = _base_.synthtext_textdet_train
synthtext_textdet_train.pipeline = train_pipeline

train_dataloader = dict(
    batch_size=16,
    num_workers=8,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=synthtext_textdet_train)

auto_scale_lr = dict(base_batch_size=16)