File size: 2,570 Bytes
9bf4bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# BasicBlock has a little difference from official PANet
# BasicBlock in mmdet lacks RELU in the last convolution.
model = dict(
    type='PANet',
    data_preprocessor=dict(
        type='TextDetDataPreprocessor',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        bgr_to_rgb=True,
        pad_size_divisor=32),
    backbone=dict(
        type='mmdet.ResNet',
        depth=18,
        num_stages=4,
        stem_channels=128,
        deep_stem=True,
        out_indices=(0, 1, 2, 3),
        frozen_stages=-1,
        norm_eval=False,
        init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18'),
        style='pytorch'),
    neck=dict(type='FPEM_FFM', in_channels=[64, 128, 256, 512]),
    det_head=dict(
        type='PANHead',
        in_channels=[128, 128, 128, 128],
        hidden_dim=128,
        out_channel=6,
        module_loss=dict(
            type='PANModuleLoss',
            loss_text=dict(type='MaskedSquareDiceLoss'),
            loss_kernel=dict(type='MaskedSquareDiceLoss'),
        ),
        postprocessor=dict(type='PANPostprocessor', text_repr_type='quad')))

train_pipeline = [
    dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
    dict(
        type='LoadOCRAnnotations',
        with_polygon=True,
        with_bbox=True,
        with_label=True,
    ),
    dict(type='ShortScaleAspectJitter', short_size=736, scale_divisor=32),
    dict(type='RandomFlip', prob=0.5, direction='horizontal'),
    dict(type='RandomRotate', max_angle=10),
    dict(type='TextDetRandomCrop', target_size=(736, 736)),
    dict(type='Pad', size=(736, 736)),
    dict(
        type='TorchVisionWrapper',
        op='ColorJitter',
        brightness=32.0 / 255,
        saturation=0.5),
    dict(
        type='PackTextDetInputs',
        meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
]

test_pipeline = [
    dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
    # TODO Replace with mmcv.RescaleToShort when it's ready
    dict(
        type='ShortScaleAspectJitter',
        short_size=736,
        scale_divisor=1,
        ratio_range=(1.0, 1.0),
        aspect_ratio_range=(1.0, 1.0)),
    # add loading annotation after ``Resize`` because ground truth
    # does not need to do resize data transform
    dict(
        type='LoadOCRAnnotations',
        with_polygon=True,
        with_bbox=True,
        with_label=True),
    dict(
        type='PackTextDetInputs',
        meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
]