File size: 5,771 Bytes
9bf4bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import math
import os
import os.path as osp

import mmcv
import mmengine

from mmocr.utils import dump_ocr_data


def collect_files(img_dir, gt_dir, ratio):
    """Collect all images and their corresponding groundtruth files.
    Args:
        img_dir (str): The image directory
        gt_dir (str): The groundtruth directory
        ratio (float): Split ratio for val set

    Returns:
        files (list): The list of tuples (img_file, groundtruth_file)
    """
    assert isinstance(img_dir, str)
    assert img_dir
    assert isinstance(gt_dir, str)
    assert gt_dir
    assert isinstance(ratio, float)
    assert ratio < 1.0, 'val_ratio should be a float between 0.0 to 1.0'

    ann_list, imgs_list = [], []
    for ann_file in os.listdir(gt_dir):
        ann_list.append(osp.join(gt_dir, ann_file))
        imgs_list.append(osp.join(img_dir, ann_file.replace('txt', 'jpg')))

    all_files = list(zip(imgs_list, ann_list))
    assert len(all_files), f'No images found in {img_dir}'
    print(f'Loaded {len(all_files)} images from {img_dir}')

    trn_files, val_files = [], []
    if ratio > 0:
        for i, file in enumerate(all_files):
            if i % math.floor(1 / ratio):
                trn_files.append(file)
            else:
                val_files.append(file)
    else:
        trn_files, val_files = all_files, []

    print(f'training #{len(trn_files)}, val #{len(val_files)}')

    return trn_files, val_files


def collect_annotations(files, nproc=1):
    """Collect the annotation information.
    Args:
        files (list): The list of tuples (image_file, groundtruth_file)
        nproc (int): The number of process to collect annotations

    Returns:
        images (list): The list of image information dicts
    """
    assert isinstance(files, list)
    assert isinstance(nproc, int)

    if nproc > 1:
        images = mmengine.track_parallel_progress(
            load_img_info, files, nproc=nproc)
    else:
        images = mmengine.track_progress(load_img_info, files)

    return images


def load_img_info(files):
    """Load the information of one image.
    Args:
        files (tuple): The tuple of (img_file, groundtruth_file)

    Returns:
        img_info (dict): The dict of the img and annotation information
    """
    assert isinstance(files, tuple)

    img_file, gt_file = files
    assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split(
        '.')[0]
    # read imgs while ignoring orientations
    img = mmcv.imread(img_file)

    img_info = dict(
        file_name=osp.join(osp.basename(img_file)),
        height=img.shape[0],
        width=img.shape[1],
        segm_file=osp.join(osp.basename(gt_file)))

    if osp.splitext(gt_file)[1] == '.txt':
        img_info = load_txt_info(gt_file, img_info)
    else:
        raise NotImplementedError

    return img_info


def load_txt_info(gt_file, img_info):
    """Collect the annotation information.

    The annotation format is as the following:
    x1, y1, x2, y2, x3, y3, x4, y4, difficult, text

    390,902,1856,902,1856,1225,390,1225,0,"金氏眼镜"
    1875,1170,2149,1170,2149,1245,1875,1245,0,"创于1989"
    2054,1277,2190,1277,2190,1323,2054,1323,0,"城建店"

    Args:
        gt_file (str): The path to ground-truth
        img_info (dict): The dict of the img and annotation information

    Returns:
        img_info (dict): The dict of the img and annotation information
    """

    anno_info = []
    with open(gt_file, encoding='utf-8-sig') as f:
        lines = f.readlines()
    for line in lines:
        points = line.split(',')[0:8]
        word = line.split(',')[9].rstrip('\n').strip('"')
        difficult = 1 if line.split(',')[8] != '0' else 0
        segmentation = [int(pt) for pt in points]
        x = max(0, min(segmentation[0::2]))
        y = max(0, min(segmentation[1::2]))
        w = abs(max(segmentation[0::2]) - x)
        h = abs(max(segmentation[1::2]) - y)
        bbox = [x, y, w, h]

        if word == '###' or difficult == 1:
            iscrowd = 1
        else:
            iscrowd = 0

        anno = dict(
            iscrowd=iscrowd,
            category_id=1,
            bbox=bbox,
            area=w * h,
            segmentation=[segmentation])
        anno_info.append(anno)

    img_info.update(anno_info=anno_info)

    return img_info


def parse_args():
    parser = argparse.ArgumentParser(
        description='Generate training and val set of RCTW.')
    parser.add_argument('root_path', help='Root dir path of RCTW')
    parser.add_argument(
        '--val-ratio', help='Split ratio for val set', default=0.0, type=float)
    parser.add_argument(
        '--nproc', default=1, type=int, help='Number of process')
    args = parser.parse_args()
    return args


def main():
    args = parse_args()
    root_path = args.root_path
    ratio = args.val_ratio

    trn_files, val_files = collect_files(
        osp.join(root_path, 'imgs'), osp.join(root_path, 'annotations'), ratio)

    # Train set
    with mmengine.Timer(
            print_tmpl='It takes {}s to convert RCTW Training annotation'):
        trn_infos = collect_annotations(trn_files, nproc=args.nproc)
        dump_ocr_data(trn_infos, osp.join(root_path,
                                          'instances_training.json'),
                      'textdet')

    # Val set
    if len(val_files) > 0:
        with mmengine.Timer(
                print_tmpl='It takes {}s to convert RCTW Val annotation'):
            val_infos = collect_annotations(val_files, nproc=args.nproc)
            dump_ocr_data(val_infos, osp.join(root_path, 'instances_val.json'),
                          'textdet')


if __name__ == '__main__':
    main()