Spaces:
Sleeping
Sleeping
File size: 28,656 Bytes
9bf4bd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Dict, Tuple
import cv2
import mmcv
import numpy as np
from mmcv.transforms import Resize as MMCV_Resize
from mmcv.transforms.base import BaseTransform
from mmcv.transforms.utils import avoid_cache_randomness, cache_randomness
from mmocr.registry import TRANSFORMS
from mmocr.utils import (bbox2poly, crop_polygon, is_poly_inside_rect,
poly2bbox, poly2shapely, poly_make_valid,
remove_pipeline_elements, rescale_polygon,
shapely2poly)
from .wrappers import ImgAugWrapper
@TRANSFORMS.register_module()
@avoid_cache_randomness
class RandomCrop(BaseTransform):
"""Randomly crop images and make sure to contain at least one intact
instance.
Required Keys:
- img
- gt_polygons
- gt_bboxes
- gt_bboxes_labels
- gt_ignored
- gt_texts (optional)
Modified Keys:
- img
- img_shape
- gt_polygons
- gt_bboxes
- gt_bboxes_labels
- gt_ignored
- gt_texts (optional)
Args:
min_side_ratio (float): The ratio of the shortest edge of the cropped
image to the original image size.
"""
def __init__(self, min_side_ratio: float = 0.4) -> None:
if not 0. <= min_side_ratio <= 1.:
raise ValueError('`min_side_ratio` should be in range [0, 1],')
self.min_side_ratio = min_side_ratio
def _sample_valid_start_end(self, valid_array: np.ndarray, min_len: int,
max_start_idx: int,
min_end_idx: int) -> Tuple[int, int]:
"""Sample a start and end idx on a given axis that contains at least
one polygon. There should be at least one intact polygon bounded by
max_start_idx and min_end_idx.
Args:
valid_array (ndarray): A 0-1 mask 1D array indicating valid regions
on the axis. 0 indicates text regions which are not allowed to
be sampled from.
min_len (int): Minimum distance between two start and end points.
max_start_idx (int): The maximum start index.
min_end_idx (int): The minimum end index.
Returns:
tuple(int, int): Start and end index on a given axis, where
0 <= start < max_start_idx and
min_end_idx <= end < len(valid_array).
"""
assert isinstance(min_len, int)
assert len(valid_array) > min_len
start_array = valid_array.copy()
max_start_idx = min(len(start_array) - min_len, max_start_idx)
start_array[max_start_idx:] = 0
start_array[0] = 1
diff_array = np.hstack([0, start_array]) - np.hstack([start_array, 0])
region_starts = np.where(diff_array < 0)[0]
region_ends = np.where(diff_array > 0)[0]
region_ind = np.random.randint(0, len(region_starts))
start = np.random.randint(region_starts[region_ind],
region_ends[region_ind])
end_array = valid_array.copy()
min_end_idx = max(start + min_len, min_end_idx)
end_array[:min_end_idx] = 0
end_array[-1] = 1
diff_array = np.hstack([0, end_array]) - np.hstack([end_array, 0])
region_starts = np.where(diff_array < 0)[0]
region_ends = np.where(diff_array > 0)[0]
region_ind = np.random.randint(0, len(region_starts))
# Note that end index will never be region_ends[region_ind]
# and therefore end index is always in range [0, w+1]
end = np.random.randint(region_starts[region_ind],
region_ends[region_ind])
return start, end
def _sample_crop_box(self, img_size: Tuple[int, int],
results: Dict) -> np.ndarray:
"""Generate crop box which only contains intact polygon instances with
the number >= 1.
Args:
img_size (tuple(int, int)): The image size (h, w).
results (dict): The results dict.
Returns:
ndarray: Crop area in shape (4, ).
"""
assert isinstance(img_size, tuple)
h, w = img_size[:2]
# Crop box can be represented by any integer numbers in
# range [0, w] and [0, h]
x_valid_array = np.ones(w + 1, dtype=np.int32)
y_valid_array = np.ones(h + 1, dtype=np.int32)
polygons = results['gt_polygons']
# Randomly select a polygon that must be inside
# the cropped region
kept_poly_idx = np.random.randint(0, len(polygons))
for i, polygon in enumerate(polygons):
polygon = polygon.reshape((-1, 2))
clip_x = np.clip(polygon[:, 0], 0, w)
clip_y = np.clip(polygon[:, 1], 0, h)
min_x = np.floor(np.min(clip_x)).astype(np.int32)
min_y = np.floor(np.min(clip_y)).astype(np.int32)
max_x = np.ceil(np.max(clip_x)).astype(np.int32)
max_y = np.ceil(np.max(clip_y)).astype(np.int32)
x_valid_array[min_x:max_x] = 0
y_valid_array[min_y:max_y] = 0
if i == kept_poly_idx:
max_x_start = min_x
min_x_end = max_x
max_y_start = min_y
min_y_end = max_y
min_w = int(w * self.min_side_ratio)
min_h = int(h * self.min_side_ratio)
x1, x2 = self._sample_valid_start_end(x_valid_array, min_w,
max_x_start, min_x_end)
y1, y2 = self._sample_valid_start_end(y_valid_array, min_h,
max_y_start, min_y_end)
return np.array([x1, y1, x2, y2])
def _crop_img(self, img: np.ndarray, bbox: np.ndarray) -> np.ndarray:
"""Crop image given a bbox region.
Args:
img (ndarray): Image.
bbox (ndarray): Cropping region in shape (4, )
Returns:
ndarray: Cropped image.
"""
assert img.ndim == 3
h, w, _ = img.shape
assert 0 <= bbox[1] < bbox[3] <= h
assert 0 <= bbox[0] < bbox[2] <= w
return img[bbox[1]:bbox[3], bbox[0]:bbox[2]]
def transform(self, results: Dict) -> Dict:
"""Applying random crop on results.
Args:
results (dict): Result dict contains the data to transform.
Returns:
dict: The transformed data.
"""
if len(results['gt_polygons']) < 1:
return results
crop_box = self._sample_crop_box(results['img'].shape, results)
img = self._crop_img(results['img'], crop_box)
results['img'] = img
results['img_shape'] = img.shape[:2]
crop_x = crop_box[0]
crop_y = crop_box[1]
crop_w = crop_box[2] - crop_box[0]
crop_h = crop_box[3] - crop_box[1]
labels = results['gt_bboxes_labels']
valid_labels = []
ignored = results['gt_ignored']
valid_ignored = []
if 'gt_texts' in results:
valid_texts = []
texts = results['gt_texts']
polys = results['gt_polygons']
valid_polys = []
for idx, poly in enumerate(polys):
poly = poly.reshape(-1, 2)
poly = (poly - (crop_x, crop_y)).flatten()
if is_poly_inside_rect(poly, [0, 0, crop_w, crop_h]):
valid_polys.append(poly)
valid_labels.append(labels[idx])
valid_ignored.append(ignored[idx])
if 'gt_texts' in results:
valid_texts.append(texts[idx])
results['gt_polygons'] = valid_polys
results['gt_bboxes_labels'] = np.array(valid_labels, dtype=np.int64)
results['gt_ignored'] = np.array(valid_ignored, dtype=bool)
if 'gt_texts' in results:
results['gt_texts'] = valid_texts
valid_bboxes = [poly2bbox(poly) for poly in results['gt_polygons']]
results['gt_bboxes'] = np.array(valid_bboxes).astype(
np.float32).reshape(-1, 4)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(min_side_ratio = {self.min_side_ratio})'
return repr_str
@TRANSFORMS.register_module()
class RandomRotate(BaseTransform):
"""Randomly rotate the image, boxes, and polygons. For recognition task,
only the image will be rotated. If set ``use_canvas`` as True, the shape of
rotated image might be modified based on the rotated angle size, otherwise,
the image will keep the shape before rotation.
Required Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_polygons (optional)
Modified Keys:
- img
- img_shape (optional)
- gt_bboxes (optional)
- gt_polygons (optional)
Added Keys:
- rotated_angle
Args:
max_angle (int): The maximum rotation angle (can be bigger than 180 or
a negative). Defaults to 10.
pad_with_fixed_color (bool): The flag for whether to pad rotated
image with fixed value. Defaults to False.
pad_value (tuple[int, int, int]): The color value for padding rotated
image. Defaults to (0, 0, 0).
use_canvas (bool): Whether to create a canvas for rotated image.
Defaults to False. If set true, the image shape may be modified.
"""
def __init__(
self,
max_angle: int = 10,
pad_with_fixed_color: bool = False,
pad_value: Tuple[int, int, int] = (0, 0, 0),
use_canvas: bool = False,
) -> None:
if not isinstance(max_angle, int):
raise TypeError('`max_angle` should be an integer'
f', but got {type(max_angle)} instead')
if not isinstance(pad_with_fixed_color, bool):
raise TypeError('`pad_with_fixed_color` should be a bool, '
f'but got {type(pad_with_fixed_color)} instead')
if not isinstance(pad_value, (list, tuple)):
raise TypeError('`pad_value` should be a list or tuple, '
f'but got {type(pad_value)} instead')
if len(pad_value) != 3:
raise ValueError('`pad_value` should contain three integers')
if not isinstance(pad_value[0], int) or not isinstance(
pad_value[1], int) or not isinstance(pad_value[2], int):
raise ValueError('`pad_value` should contain three integers')
self.max_angle = max_angle
self.pad_with_fixed_color = pad_with_fixed_color
self.pad_value = pad_value
self.use_canvas = use_canvas
@cache_randomness
def _sample_angle(self, max_angle: int) -> float:
"""Sampling a random angle for rotation.
Args:
max_angle (int): Maximum rotation angle
Returns:
float: The random angle used for rotation
"""
angle = np.random.random_sample() * 2 * max_angle - max_angle
return angle
@staticmethod
def _cal_canvas_size(ori_size: Tuple[int, int],
degree: int) -> Tuple[int, int]:
"""Calculate the canvas size.
Args:
ori_size (Tuple[int, int]): The original image size (height, width)
degree (int): The rotation angle
Returns:
Tuple[int, int]: The size of the canvas
"""
assert isinstance(ori_size, tuple)
angle = degree * math.pi / 180.0
h, w = ori_size[:2]
cos = math.cos(angle)
sin = math.sin(angle)
canvas_h = int(w * math.fabs(sin) + h * math.fabs(cos))
canvas_w = int(w * math.fabs(cos) + h * math.fabs(sin))
canvas_size = (canvas_h, canvas_w)
return canvas_size
@staticmethod
def _rotate_points(center: Tuple[float, float],
points: np.array,
theta: float,
center_shift: Tuple[int, int] = (0, 0)) -> np.array:
"""Rotating a set of points according to the given theta.
Args:
center (Tuple[float, float]): The coordinate of the canvas center
points (np.array): A set of points needed to be rotated
theta (float): Rotation angle
center_shift (Tuple[int, int]): The shifting offset of the center
coordinate
Returns:
np.array: The rotated coordinates of the input points
"""
(center_x, center_y) = center
center_y = -center_y
x, y = points[::2], points[1::2]
y = -y
theta = theta / 180 * math.pi
cos = math.cos(theta)
sin = math.sin(theta)
x = (x - center_x)
y = (y - center_y)
_x = center_x + x * cos - y * sin + center_shift[0]
_y = -(center_y + x * sin + y * cos) + center_shift[1]
points[::2], points[1::2] = _x, _y
return points
def _rotate_img(self, results: Dict) -> Tuple[int, int]:
"""Rotating the input image based on the given angle.
Args:
results (dict): Result dict containing the data to transform.
Returns:
Tuple[int, int]: The shifting offset of the center point.
"""
if results.get('img', None) is not None:
h = results['img'].shape[0]
w = results['img'].shape[1]
rotation_matrix = cv2.getRotationMatrix2D(
(w / 2, h / 2), results['rotated_angle'], 1)
canvas_size = self._cal_canvas_size((h, w),
results['rotated_angle'])
center_shift = (int(
(canvas_size[1] - w) / 2), int((canvas_size[0] - h) / 2))
rotation_matrix[0, 2] += int((canvas_size[1] - w) / 2)
rotation_matrix[1, 2] += int((canvas_size[0] - h) / 2)
if self.pad_with_fixed_color:
rotated_img = cv2.warpAffine(
results['img'],
rotation_matrix, (canvas_size[1], canvas_size[0]),
flags=cv2.INTER_NEAREST,
borderValue=self.pad_value)
else:
mask = np.zeros_like(results['img'])
(h_ind, w_ind) = (np.random.randint(0, h * 7 // 8),
np.random.randint(0, w * 7 // 8))
img_cut = results['img'][h_ind:(h_ind + h // 9),
w_ind:(w_ind + w // 9)]
img_cut = mmcv.imresize(img_cut,
(canvas_size[1], canvas_size[0]))
mask = cv2.warpAffine(
mask,
rotation_matrix, (canvas_size[1], canvas_size[0]),
borderValue=[1, 1, 1])
rotated_img = cv2.warpAffine(
results['img'],
rotation_matrix, (canvas_size[1], canvas_size[0]),
borderValue=[0, 0, 0])
rotated_img = rotated_img + img_cut * mask
results['img'] = rotated_img
else:
raise ValueError('`img` is not found in results')
return center_shift
def _rotate_bboxes(self, results: Dict, center_shift: Tuple[int,
int]) -> None:
"""Rotating the bounding boxes based on the given angle.
Args:
results (dict): Result dict containing the data to transform.
center_shift (Tuple[int, int]): The shifting offset of the
center point
"""
if results.get('gt_bboxes', None) is not None:
height, width = results['img_shape']
box_list = []
for box in results['gt_bboxes']:
rotated_box = self._rotate_points((width / 2, height / 2),
bbox2poly(box),
results['rotated_angle'],
center_shift)
rotated_box = poly2bbox(rotated_box)
box_list.append(rotated_box)
results['gt_bboxes'] = np.array(
box_list, dtype=np.float32).reshape(-1, 4)
def _rotate_polygons(self, results: Dict,
center_shift: Tuple[int, int]) -> None:
"""Rotating the polygons based on the given angle.
Args:
results (dict): Result dict containing the data to transform.
center_shift (Tuple[int, int]): The shifting offset of the
center point
"""
if results.get('gt_polygons', None) is not None:
height, width = results['img_shape']
polygon_list = []
for poly in results['gt_polygons']:
rotated_poly = self._rotate_points(
(width / 2, height / 2), poly, results['rotated_angle'],
center_shift)
polygon_list.append(rotated_poly)
results['gt_polygons'] = polygon_list
def transform(self, results: Dict) -> Dict:
"""Applying random rotate on results.
Args:
results (Dict): Result dict containing the data to transform.
center_shift (Tuple[int, int]): The shifting offset of the
center point
Returns:
dict: The transformed data
"""
# TODO rotate char_quads & char_rects for SegOCR
if self.use_canvas:
results['rotated_angle'] = self._sample_angle(self.max_angle)
# rotate image
center_shift = self._rotate_img(results)
# rotate gt_bboxes
self._rotate_bboxes(results, center_shift)
# rotate gt_polygons
self._rotate_polygons(results, center_shift)
results['img_shape'] = (results['img'].shape[0],
results['img'].shape[1])
else:
args = [
dict(
cls='Affine',
rotate=[-self.max_angle, self.max_angle],
backend='cv2',
order=0) # order=0 -> cv2.INTER_NEAREST
]
imgaug_transform = ImgAugWrapper(args)
results = imgaug_transform(results)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(max_angle = {self.max_angle}'
repr_str += f', pad_with_fixed_color = {self.pad_with_fixed_color}'
repr_str += f', pad_value = {self.pad_value}'
repr_str += f', use_canvas = {self.use_canvas})'
return repr_str
@TRANSFORMS.register_module()
class Resize(MMCV_Resize):
"""Resize image & bboxes & polygons.
This transform resizes the input image according to ``scale`` or
``scale_factor``. Bboxes and polygons are then resized with the same
scale factor. if ``scale`` and ``scale_factor`` are both set, it will use
``scale`` to resize.
Required Keys:
- img
- img_shape
- gt_bboxes
- gt_polygons
Modified Keys:
- img
- img_shape
- gt_bboxes
- gt_polygons
Added Keys:
- scale
- scale_factor
- keep_ratio
Args:
scale (int or tuple): Image scales for resizing. Defaults to None.
scale_factor (float or tuple[float, float]): Scale factors for
resizing. It's either a factor applicable to both dimensions or
in the form of (scale_w, scale_h). Defaults to None.
keep_ratio (bool): Whether to keep the aspect ratio when resizing the
image. Defaults to False.
clip_object_border (bool): Whether to clip the objects outside the
border of the image. Defaults to True.
backend (str): Image resize backend, choices are 'cv2' and 'pillow'.
These two backends generates slightly different results. Defaults
to 'cv2'.
interpolation (str): Interpolation method, accepted values are
"nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
backend, "nearest", "bilinear" for 'pillow' backend. Defaults
to 'bilinear'.
"""
def _resize_img(self, results: dict) -> None:
"""Resize images with ``results['scale']``.
If no image is provided, only resize ``results['img_shape']``.
"""
if results.get('img', None) is not None:
return super()._resize_img(results)
h, w = results['img_shape']
if self.keep_ratio:
new_w, new_h = mmcv.rescale_size((w, h),
results['scale'],
return_scale=False)
else:
new_w, new_h = results['scale']
w_scale = new_w / w
h_scale = new_h / h
results['img_shape'] = (new_h, new_w)
results['scale'] = (new_w, new_h)
results['scale_factor'] = (w_scale, h_scale)
results['keep_ratio'] = self.keep_ratio
def _resize_bboxes(self, results: dict) -> None:
"""Resize bounding boxes."""
super()._resize_bboxes(results)
if results.get('gt_bboxes', None) is not None:
results['gt_bboxes'] = results['gt_bboxes'].astype(np.float32)
def _resize_polygons(self, results: dict) -> None:
"""Resize polygons with ``results['scale_factor']``."""
if results.get('gt_polygons', None) is not None:
polygons = results['gt_polygons']
polygons_resize = []
for idx, polygon in enumerate(polygons):
polygon = rescale_polygon(polygon, results['scale_factor'])
if self.clip_object_border:
crop_bbox = np.array([
0, 0, results['img_shape'][1], results['img_shape'][0]
])
polygon = crop_polygon(polygon, crop_bbox)
if polygon is not None:
polygons_resize.append(polygon.astype(np.float32))
else:
polygons_resize.append(
np.zeros_like(polygons[idx], dtype=np.float32))
results['gt_polygons'] = polygons_resize
def transform(self, results: dict) -> dict:
"""Transform function to resize images, bounding boxes and polygons.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Resized results, 'img', 'gt_bboxes', 'gt_polygons',
'scale', 'scale_factor', 'height', 'width', and 'keep_ratio' keys
are updated in result dict.
"""
results = super().transform(results)
self._resize_polygons(results)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(scale={self.scale}, '
repr_str += f'scale_factor={self.scale_factor}, '
repr_str += f'keep_ratio={self.keep_ratio}, '
repr_str += f'clip_object_border={self.clip_object_border}), '
repr_str += f'backend={self.backend}), '
repr_str += f'interpolation={self.interpolation})'
return repr_str
@TRANSFORMS.register_module()
class RemoveIgnored(BaseTransform):
"""Removed ignored elements from the pipeline.
Required Keys:
- gt_ignored
- gt_polygons (optional)
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_texts (optional)
Modified Keys:
- gt_ignored
- gt_polygons (optional)
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_texts (optional)
"""
def transform(self, results: Dict) -> Dict:
remove_inds = np.where(results['gt_ignored'])[0]
if len(remove_inds) == len(results['gt_ignored']):
return None
return remove_pipeline_elements(results, remove_inds)
@TRANSFORMS.register_module()
class FixInvalidPolygon(BaseTransform):
"""Fix invalid polygons in the dataset.
Required Keys:
- gt_polygons
- gt_ignored (optional)
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_texts (optional)
Modified Keys:
- gt_polygons
- gt_ignored (optional)
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_texts (optional)
Args:
mode (str): The mode of fixing invalid polygons. Options are 'fix' and
'ignore'.
For the 'fix' mode, the transform will try to fix
the invalid polygons to a valid one by eliminating the
self-intersection or converting the bboxes to polygons. If
it can't be fixed by any means (e.g. the polygon contains less
than 3 points or it's actually a line/point), the annotation will
be removed.
For the 'ignore' mode, the invalid polygons
will be set to "ignored" during training.
Defaults to 'fix'.
min_poly_points (int): Minimum number of the coordinate points in a
polygon. Defaults to 4.
fix_from_bbox (bool): Whether to convert the bboxes to polygons when
the polygon is invalid and not directly fixable. Defaults to True.
"""
def __init__(self,
mode: str = 'fix',
min_poly_points: int = 4,
fix_from_bbox: bool = True) -> None:
super().__init__()
self.mode = mode
assert min_poly_points >= 3, 'min_poly_points must be greater than 3.'
self.min_poly_points = min_poly_points
self.fix_from_bbox = fix_from_bbox
assert self.mode in [
'fix', 'ignore'
], f"Supported modes are 'fix' and 'ignore', but got {self.mode}"
def transform(self, results: Dict) -> Dict:
"""Fix invalid polygons.
Args:
results (dict): Result dict containing the data to transform.
Returns:
Optional[dict]: The transformed data. If all the polygons are
unfixable, return None.
"""
if results.get('gt_polygons', None) is not None:
remove_inds = []
for idx, polygon in enumerate(results['gt_polygons']):
if self.mode == 'ignore':
if results['gt_ignored'][idx]:
continue
if not (len(polygon) >= self.min_poly_points * 2
and len(polygon) % 2
== 0) or not poly2shapely(polygon).is_valid:
results['gt_ignored'][idx] = True
else:
# If "polygon" contains less than 3 points
if len(polygon) < 6:
remove_inds.append(idx)
continue
try:
shapely_polygon = poly2shapely(polygon)
if shapely_polygon.is_valid and len(
polygon) >= self.min_poly_points * 2:
continue
results['gt_polygons'][idx] = shapely2poly(
poly_make_valid(shapely_polygon))
# If an empty polygon is generated, it's still a bad
# fix
if len(results['gt_polygons'][idx]) == 0:
raise ValueError
# It's hard to fix, e.g. the "polygon" is a line or
# a point
except Exception:
if self.fix_from_bbox and 'gt_bboxes' in results:
bbox = results['gt_bboxes'][idx]
bbox_polygon = bbox2poly(bbox)
results['gt_polygons'][idx] = bbox_polygon
shapely_polygon = poly2shapely(bbox_polygon)
if (not shapely_polygon.is_valid
or shapely_polygon.is_empty):
remove_inds.append(idx)
else:
remove_inds.append(idx)
if len(remove_inds) == len(results['gt_polygons']):
return None
results = remove_pipeline_elements(results, remove_inds)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(mode = "{self.mode}", '
repr_str += f'min_poly_points = {self.min_poly_points}, '
repr_str += f'fix_from_bbox = {self.fix_from_bbox})'
return repr_str
|