File size: 10,145 Bytes
9bf4bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Tuple, Union

import torch
from mmcv.cnn import ConvModule, build_plugin_layer
from mmengine.model import BaseModule, Sequential

import mmocr.utils as utils
from mmocr.models.textrecog.layers import BasicBlock
from mmocr.registry import MODELS


@MODELS.register_module()
class ResNet(BaseModule):
    """
    Args:
        in_channels (int): Number of channels of input image tensor.
        stem_channels (list[int]): List of channels in each stem layer. E.g.,
            [64, 128] stands for 64 and 128 channels in the first and second
            stem layers.
        block_cfgs (dict): Configs of block
        arch_layers (list[int]): List of Block number for each stage.
        arch_channels (list[int]): List of channels for each stage.
        strides (Sequence[int] or Sequence[tuple]): Strides of the first block
            of each stage.
        out_indices (Sequence[int], optional): Indices of output stages. If not
            specified, only the last stage will be returned.
        plugins (dict, optional): Configs of stage plugins
        init_cfg (dict or list[dict], optional): Initialization config dict.
    """

    def __init__(self,
                 in_channels: int,
                 stem_channels: List[int],
                 block_cfgs: dict,
                 arch_layers: List[int],
                 arch_channels: List[int],
                 strides: Union[List[int], List[Tuple]],
                 out_indices: Optional[List[int]] = None,
                 plugins: Optional[Dict] = None,
                 init_cfg: Optional[Union[Dict, List[Dict]]] = [
                     dict(type='Xavier', layer='Conv2d'),
                     dict(type='Constant', val=1, layer='BatchNorm2d'),
                 ]):
        super().__init__(init_cfg=init_cfg)
        assert isinstance(in_channels, int)
        assert isinstance(stem_channels, int) or utils.is_type_list(
            stem_channels, int)
        assert utils.is_type_list(arch_layers, int)
        assert utils.is_type_list(arch_channels, int)
        assert utils.is_type_list(strides, tuple) or utils.is_type_list(
            strides, int)
        assert len(arch_layers) == len(arch_channels) == len(strides)
        assert out_indices is None or isinstance(out_indices, (list, tuple))

        self.out_indices = out_indices
        self._make_stem_layer(in_channels, stem_channels)
        self.num_stages = len(arch_layers)
        self.use_plugins = False
        self.arch_channels = arch_channels
        self.res_layers = []
        if plugins is not None:
            self.plugin_ahead_names = []
            self.plugin_after_names = []
            self.use_plugins = True
        for i, num_blocks in enumerate(arch_layers):
            stride = strides[i]
            channel = arch_channels[i]

            if self.use_plugins:
                self._make_stage_plugins(plugins, stage_idx=i)

            res_layer = self._make_layer(
                block_cfgs=block_cfgs,
                inplanes=self.inplanes,
                planes=channel,
                blocks=num_blocks,
                stride=stride,
            )
            self.inplanes = channel
            layer_name = f'layer{i + 1}'
            self.add_module(layer_name, res_layer)
            self.res_layers.append(layer_name)

    def _make_layer(self, block_cfgs: Dict, inplanes: int, planes: int,
                    blocks: int, stride: int) -> Sequential:
        """Build resnet layer.

        Args:
            block_cfgs (dict): Configs of blocks.
            inplanes (int): Number of input channels.
            planes (int): Number of output channels.
            blocks (int): Number of blocks.
            stride (int): Stride of the first block.

        Returns:
            Sequential: A sequence of blocks.
        """
        layers = []
        downsample = None
        block_cfgs_ = block_cfgs.copy()
        if isinstance(stride, int):
            stride = (stride, stride)

        if stride[0] != 1 or stride[1] != 1 or inplanes != planes:
            downsample = ConvModule(
                inplanes,
                planes,
                1,
                stride,
                norm_cfg=dict(type='BN'),
                act_cfg=None)

        if block_cfgs_['type'] == 'BasicBlock':
            block = BasicBlock
            block_cfgs_.pop('type')
        else:
            raise ValueError('{} not implement yet'.format(block['type']))

        layers.append(
            block(
                inplanes,
                planes,
                stride=stride,
                downsample=downsample,
                **block_cfgs_))
        inplanes = planes
        for _ in range(1, blocks):
            layers.append(block(inplanes, planes, **block_cfgs_))

        return Sequential(*layers)

    def _make_stem_layer(self, in_channels: int,
                         stem_channels: Union[int, List[int]]) -> None:
        """Make stem layers.

        Args:
            in_channels (int): Number of input channels.
            stem_channels (list[int] or int): List of channels in each stem
                layer. If int, only one stem layer will be created.
        """
        if isinstance(stem_channels, int):
            stem_channels = [stem_channels]
        stem_layers = []
        for _, channels in enumerate(stem_channels):
            stem_layer = ConvModule(
                in_channels,
                channels,
                kernel_size=3,
                stride=1,
                padding=1,
                bias=False,
                norm_cfg=dict(type='BN'),
                act_cfg=dict(type='ReLU'))
            in_channels = channels
            stem_layers.append(stem_layer)
        self.stem_layers = Sequential(*stem_layers)
        self.inplanes = stem_channels[-1]

    def _make_stage_plugins(self, plugins: List[Dict], stage_idx: int) -> None:
        """Make plugins for ResNet ``stage_idx``th stage.

        Currently we support inserting ``nn.Maxpooling``,
        ``mmcv.cnn.Convmodule``into the backbone. Originally designed
        for ResNet31-like architectures.

        Examples:
            >>> plugins=[
            ...     dict(cfg=dict(type="Maxpooling", arg=(2,2)),
            ...          stages=(True, True, False, False),
            ...          position='before_stage'),
            ...     dict(cfg=dict(type="Maxpooling", arg=(2,1)),
            ...          stages=(False, False, True, Flase),
            ...          position='before_stage'),
            ...     dict(cfg=dict(
            ...              type='ConvModule',
            ...              kernel_size=3,
            ...              stride=1,
            ...              padding=1,
            ...              norm_cfg=dict(type='BN'),
            ...              act_cfg=dict(type='ReLU')),
            ...          stages=(True, True, True, True),
            ...          position='after_stage')]

        Suppose ``stage_idx=1``, the structure of stage would be:

        .. code-block:: none

            Maxpooling -> A set of Basicblocks -> ConvModule

        Args:
            plugins (list[dict]): List of plugin configs to build.
            stage_idx (int): Index of stage to build
        """
        in_channels = self.arch_channels[stage_idx]
        self.plugin_ahead_names.append([])
        self.plugin_after_names.append([])
        for plugin in plugins:
            plugin = plugin.copy()
            stages = plugin.pop('stages', None)
            position = plugin.pop('position', None)
            assert stages is None or len(stages) == self.num_stages
            if stages[stage_idx]:
                if position == 'before_stage':
                    name, layer = build_plugin_layer(
                        plugin['cfg'],
                        f'_before_stage_{stage_idx+1}',
                        in_channels=in_channels,
                        out_channels=in_channels)
                    self.plugin_ahead_names[stage_idx].append(name)
                    self.add_module(name, layer)
                elif position == 'after_stage':
                    name, layer = build_plugin_layer(
                        plugin['cfg'],
                        f'_after_stage_{stage_idx+1}',
                        in_channels=in_channels,
                        out_channels=in_channels)
                    self.plugin_after_names[stage_idx].append(name)
                    self.add_module(name, layer)
                else:
                    raise ValueError('uncorrect plugin position')

    def forward_plugin(self, x: torch.Tensor,
                       plugin_name: List[str]) -> torch.Tensor:
        """Forward tensor through plugin.

        Args:
            x (torch.Tensor): Input tensor.
            plugin_name (list[str]): Name of plugins.

        Returns:
            torch.Tensor: Output tensor.
        """
        out = x
        for name in plugin_name:
            out = getattr(self, name)(out)
        return out

    def forward(self,
                x: torch.Tensor) -> Union[torch.Tensor, List[torch.Tensor]]:
        """
        Args: x (Tensor): Image tensor of shape :math:`(N, 3, H, W)`.

        Returns:
            Tensor or list[Tensor]: Feature tensor. It can be a list of
            feature outputs at specific layers if ``out_indices`` is specified.
        """
        x = self.stem_layers(x)

        outs = []
        for i, layer_name in enumerate(self.res_layers):
            res_layer = getattr(self, layer_name)
            if not self.use_plugins:
                x = res_layer(x)
                if self.out_indices and i in self.out_indices:
                    outs.append(x)
            else:
                x = self.forward_plugin(x, self.plugin_ahead_names[i])
                x = res_layer(x)
                x = self.forward_plugin(x, self.plugin_after_names[i])
                if self.out_indices and i in self.out_indices:
                    outs.append(x)

        return tuple(outs) if self.out_indices else x