File size: 11,973 Bytes
9bf4bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import List, Optional, Sequence, Union

import numpy as np
import torch
from matplotlib.font_manager import FontProperties
from mmengine.visualization import Visualizer

from mmocr.registry import VISUALIZERS


@VISUALIZERS.register_module()
class BaseLocalVisualizer(Visualizer):
    """The MMOCR Text Detection Local Visualizer.

    Args:
        name (str): Name of the instance. Defaults to 'visualizer'.
        image (np.ndarray, optional): the origin image to draw. The format
            should be RGB. Defaults to None.
        vis_backends (list, optional): Visual backend config list.
            Default to None.
        save_dir (str, optional): Save file dir for all storage backends.
            If it is None, the backend storage will not save any data.
        fig_save_cfg (dict): Keyword parameters of figure for saving.
            Defaults to empty dict.
        fig_show_cfg (dict): Keyword parameters of figure for showing.
            Defaults to empty dict.
        is_openset (bool, optional): Whether the visualizer is used in
            OpenSet. Defaults to False.
        font_families (Union[str, List[str]]): The font families of labels.
            Defaults to 'sans-serif'.
        font_properties (Union[str, FontProperties], optional):
            The font properties of texts. The format should be a path str
            to font file or a `font_manager.FontProperties()` object.
            If you want to draw Chinese texts, you need to prepare
            a font file that can show Chinese characters properly.
            For example: `simhei.ttf`,`simsun.ttc`,`simkai.ttf` and so on.
            Then set font_properties=matplotlib.font_manager.FontProperties
            (fname='path/to/font_file') or font_properties='path/to/font_file'
            This function need mmengine version >=0.6.0.
            Defaults to None.
    """
    PALETTE = [(220, 20, 60), (119, 11, 32), (0, 0, 142), (0, 0, 230),
               (106, 0, 228), (0, 60, 100), (0, 80, 100), (0, 0, 70),
               (0, 0, 192), (250, 170, 30), (100, 170, 30), (220, 220, 0),
               (175, 116, 175), (250, 0, 30), (165, 42, 42), (255, 77, 255),
               (0, 226, 252), (182, 182, 255), (0, 82, 0), (120, 166, 157),
               (110, 76, 0), (174, 57, 255), (199, 100, 0), (72, 0, 118),
               (255, 179, 240), (0, 125, 92), (209, 0, 151), (188, 208, 182),
               (0, 220, 176), (255, 99, 164), (92, 0, 73), (133, 129, 255),
               (78, 180, 255), (0, 228, 0), (174, 255, 243), (45, 89, 255),
               (134, 134, 103), (145, 148, 174), (255, 208, 186),
               (197, 226, 255), (171, 134, 1), (109, 63, 54), (207, 138, 255),
               (151, 0, 95), (9, 80, 61), (84, 105, 51), (74, 65, 105),
               (166, 196, 102), (208, 195, 210), (255, 109, 65), (0, 143, 149),
               (179, 0, 194), (209, 99, 106), (5, 121, 0), (227, 255, 205),
               (147, 186, 208), (153, 69, 1), (3, 95, 161), (163, 255, 0),
               (119, 0, 170), (0, 182, 199), (0, 165, 120), (183, 130, 88),
               (95, 32, 0), (130, 114, 135), (110, 129, 133), (166, 74, 118),
               (219, 142, 185), (79, 210, 114), (178, 90, 62), (65, 70, 15),
               (127, 167, 115), (59, 105, 106), (142, 108, 45), (196, 172, 0),
               (95, 54, 80), (128, 76, 255), (201, 57, 1), (246, 0, 122),
               (191, 162, 208)]

    def __init__(self,
                 name: str = 'visualizer',
                 font_families: Union[str, List[str]] = 'sans-serif',
                 font_properties: Optional[Union[str, FontProperties]] = None,
                 **kwargs) -> None:
        super().__init__(name=name, **kwargs)
        self.font_families = font_families
        self.font_properties = self._set_font_properties(font_properties)

    def _set_font_properties(self,
                             fp: Optional[Union[str, FontProperties]] = None):
        if fp is None:
            return None
        elif isinstance(fp, str):
            return FontProperties(fname=fp)
        elif isinstance(fp, FontProperties):
            return fp
        else:
            raise ValueError(
                'font_properties argument type should be'
                ' `str` or `matplotlib.font_manager.FontProperties`')

    def get_labels_image(
        self,
        image: np.ndarray,
        labels: Union[np.ndarray, torch.Tensor],
        bboxes: Union[np.ndarray, torch.Tensor],
        colors: Union[str, Sequence[str]] = 'k',
        font_size: Union[int, float] = 10,
        auto_font_size: bool = False,
        font_families: Union[str, List[str]] = 'sans-serif',
        font_properties: Optional[Union[str, FontProperties]] = None
    ) -> np.ndarray:
        """Draw labels on image.

        Args:
            image (np.ndarray): The origin image to draw. The format
                should be RGB.
            labels (Union[np.ndarray, torch.Tensor]): The labels to draw.
            bboxes (Union[np.ndarray, torch.Tensor]): The bboxes to draw.
            colors (Union[str, Sequence[str]]): The colors of labels.
                ``colors`` can have the same length with labels or just single
                value. If ``colors`` is single value, all the labels will have
                the same colors. Refer to `matplotlib.colors` for full list of
                formats that are accepted. Defaults to 'k'.
            font_size (Union[int, float]): The font size of labels. Defaults
                to 10.
            auto_font_size (bool): Whether to automatically adjust font size.
                Defaults to False.
            font_families (Union[str, List[str]]): The font families of labels.
                Defaults to 'sans-serif'.
            font_properties (Union[str, FontProperties], optional):
                The font properties of texts. The format should be a path str
                to font file or a `font_manager.FontProperties()` object.
                If you want to draw Chinese texts, you need to prepare
                a font file that can show Chinese characters properly.
                For example: `simhei.ttf`,`simsun.ttc`,`simkai.ttf` and so on.
                Then set font_properties=matplotlib.font_manager.FontProperties
                (fname='path/to/font_file') or
                font_properties='path/to/font_file'.
                This function need mmengine version >=0.6.0.
                Defaults to None.
        """
        if not labels and not bboxes:
            return image
        if colors is not None and isinstance(colors, (list, tuple)):
            size = math.ceil(len(labels) / len(colors))
            colors = (colors * size)[:len(labels)]
        if auto_font_size:
            assert font_size is not None and isinstance(
                font_size, (int, float))
            font_size = (bboxes[:, 2:] - bboxes[:, :2]).min(-1) * font_size
            font_size = font_size.tolist()
        self.set_image(image)
        self.draw_texts(
            labels, (bboxes[:, :2] + bboxes[:, 2:]) / 2,
            vertical_alignments='center',
            horizontal_alignments='center',
            colors='k',
            font_sizes=font_size,
            font_families=font_families,
            font_properties=font_properties)
        return self.get_image()

    def get_polygons_image(self,
                           image: np.ndarray,
                           polygons: Sequence[np.ndarray],
                           colors: Union[str, Sequence[str]] = 'g',
                           filling: bool = False,
                           line_width: Union[int, float] = 0.5,
                           alpha: float = 0.5) -> np.ndarray:
        """Draw polygons on image.

        Args:
            image (np.ndarray): The origin image to draw. The format
                should be RGB.
            polygons (Sequence[np.ndarray]): The polygons to draw. The shape
                should be (N, 2).
            colors (Union[str, Sequence[str]]): The colors of polygons.
                ``colors`` can have the same length with polygons or just
                single value. If ``colors`` is single value, all the polygons
                will have the same colors. Refer to `matplotlib.colors` for
                full list of formats that are accepted. Defaults to 'g'.
            filling (bool): Whether to fill the polygons. Defaults to False.
            line_width (Union[int, float]): The line width of polygons.
                Defaults to 0.5.
            alpha (float): The alpha of polygons. Defaults to 0.5.

        Returns:
            np.ndarray: The image with polygons drawn.
        """
        if colors is not None and isinstance(colors, (list, tuple)):
            size = math.ceil(len(polygons) / len(colors))
            colors = (colors * size)[:len(polygons)]
        self.set_image(image)
        if filling:
            self.draw_polygons(
                polygons,
                face_colors=colors,
                edge_colors=colors,
                line_widths=line_width,
                alpha=alpha)
        else:
            self.draw_polygons(
                polygons,
                edge_colors=colors,
                line_widths=line_width,
                alpha=alpha)
        return self.get_image()

    def get_bboxes_image(self: Visualizer,
                         image: np.ndarray,
                         bboxes: Union[np.ndarray, torch.Tensor],
                         colors: Union[str, Sequence[str]] = 'g',
                         filling: bool = False,
                         line_width: Union[int, float] = 0.5,
                         alpha: float = 0.5) -> np.ndarray:
        """Draw bboxes on image.

        Args:
            image (np.ndarray): The origin image to draw. The format
                should be RGB.
            bboxes (Union[np.ndarray, torch.Tensor]): The bboxes to draw.
            colors (Union[str, Sequence[str]]): The colors of bboxes.
                ``colors`` can have the same length with bboxes or just single
                value. If ``colors`` is single value, all the bboxes will have
                the same colors. Refer to `matplotlib.colors` for full list of
                formats that are accepted. Defaults to 'g'.
            filling (bool): Whether to fill the bboxes. Defaults to False.
            line_width (Union[int, float]): The line width of bboxes.
                Defaults to 0.5.
            alpha (float): The alpha of bboxes. Defaults to 0.5.

        Returns:
            np.ndarray: The image with bboxes drawn.
        """
        if colors is not None and isinstance(colors, (list, tuple)):
            size = math.ceil(len(bboxes) / len(colors))
            colors = (colors * size)[:len(bboxes)]
        self.set_image(image)
        if filling:
            self.draw_bboxes(
                bboxes,
                face_colors=colors,
                edge_colors=colors,
                line_widths=line_width,
                alpha=alpha)
        else:
            self.draw_bboxes(
                bboxes,
                edge_colors=colors,
                line_widths=line_width,
                alpha=alpha)
        return self.get_image()

    def _draw_instances(self) -> np.ndarray:
        raise NotImplementedError

    def _cat_image(self, imgs: Sequence[np.ndarray], axis: int) -> np.ndarray:
        """Concatenate images.

        Args:
            imgs (Sequence[np.ndarray]): The images to concatenate.
            axis (int): The axis to concatenate.

        Returns:
            np.ndarray: The concatenated image.
        """
        cat_image = list()
        for img in imgs:
            if img is not None:
                cat_image.append(img)
        if len(cat_image):
            return np.concatenate(cat_image, axis=axis)
        else:
            return None