Spaces:
Sleeping
Sleeping
File size: 19,584 Bytes
9bf4bd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from typing import Dict, List, Optional, Sequence, Union
import mmcv
import numpy as np
import torch
from matplotlib.collections import PatchCollection
from matplotlib.patches import FancyArrow
from mmengine.visualization import Visualizer
from mmengine.visualization.utils import (check_type, check_type_and_length,
color_val_matplotlib, tensor2ndarray,
value2list)
from mmocr.registry import VISUALIZERS
from mmocr.structures import KIEDataSample
from .base_visualizer import BaseLocalVisualizer
@VISUALIZERS.register_module()
class KIELocalVisualizer(BaseLocalVisualizer):
"""The MMOCR Text Detection Local Visualizer.
Args:
name (str): Name of the instance. Defaults to 'visualizer'.
image (np.ndarray, optional): the origin image to draw. The format
should be RGB. Defaults to None.
vis_backends (list, optional): Visual backend config list.
Default to None.
save_dir (str, optional): Save file dir for all storage backends.
If it is None, the backend storage will not save any data.
fig_save_cfg (dict): Keyword parameters of figure for saving.
Defaults to empty dict.
fig_show_cfg (dict): Keyword parameters of figure for showing.
Defaults to empty dict.
is_openset (bool, optional): Whether the visualizer is used in
OpenSet. Defaults to False.
"""
def __init__(self,
name: str = 'kie_visualizer',
is_openset: bool = False,
**kwargs) -> None:
super().__init__(name=name, **kwargs)
self.is_openset = is_openset
def _draw_edge_label(self,
image: np.ndarray,
edge_labels: Union[np.ndarray, torch.Tensor],
bboxes: Union[np.ndarray, torch.Tensor],
texts: Sequence[str],
arrow_colors: str = 'g') -> np.ndarray:
"""Draw edge labels on image.
Args:
image (np.ndarray): The origin image to draw. The format
should be RGB.
edge_labels (np.ndarray or torch.Tensor): The edge labels to draw.
The shape of edge_labels should be (N, N), where N is the
number of texts.
bboxes (np.ndarray or torch.Tensor): The bboxes to draw. The shape
of bboxes should be (N, 4), where N is the number of texts.
texts (Sequence[str]): The texts to draw. The length of texts
should be the same as the number of bboxes.
arrow_colors (str, optional): The colors of arrows. Refer to
`matplotlib.colors` for full list of formats that are accepted.
Defaults to 'g'.
Returns:
np.ndarray: The image with edge labels drawn.
"""
pairs = np.where(edge_labels > 0)
if torch.is_tensor(pairs):
pairs = pairs.cpu()
key_bboxes = bboxes[pairs[0]]
value_bboxes = bboxes[pairs[1]]
x_data = np.stack([(key_bboxes[:, 2] + key_bboxes[:, 0]) / 2,
(value_bboxes[:, 0] + value_bboxes[:, 2]) / 2],
axis=-1)
y_data = np.stack([(key_bboxes[:, 1] + key_bboxes[:, 3]) / 2,
(value_bboxes[:, 1] + value_bboxes[:, 3]) / 2],
axis=-1)
key_index = np.array(list(set(pairs[0])))
val_index = np.array(list(set(pairs[1])))
key_texts = [texts[i] for i in key_index]
val_texts = [texts[i] for i in val_index]
self.set_image(image)
if key_texts:
self.draw_texts(
key_texts, (bboxes[key_index, :2] + bboxes[key_index, 2:]) / 2,
colors='k',
horizontal_alignments='center',
vertical_alignments='center',
font_families=self.font_families,
font_properties=self.font_properties)
if val_texts:
self.draw_texts(
val_texts, (bboxes[val_index, :2] + bboxes[val_index, 2:]) / 2,
colors='k',
horizontal_alignments='center',
vertical_alignments='center',
font_families=self.font_families,
font_properties=self.font_properties)
self.draw_arrows(
x_data,
y_data,
colors=arrow_colors,
line_widths=0.3,
arrow_tail_widths=0.05,
arrow_head_widths=5,
overhangs=1,
arrow_shapes='full')
return self.get_image()
def _draw_instances(
self,
image: np.ndarray,
bbox_labels: Union[np.ndarray, torch.Tensor],
bboxes: Union[np.ndarray, torch.Tensor],
polygons: Sequence[np.ndarray],
edge_labels: Union[np.ndarray, torch.Tensor],
texts: Sequence[str],
class_names: Dict,
is_openset: bool = False,
arrow_colors: str = 'g',
) -> np.ndarray:
"""Draw instances on image.
Args:
image (np.ndarray): The origin image to draw. The format
should be RGB.
bbox_labels (np.ndarray or torch.Tensor): The bbox labels to draw.
The shape of bbox_labels should be (N,), where N is the
number of texts.
bboxes (np.ndarray or torch.Tensor): The bboxes to draw. The shape
of bboxes should be (N, 4), where N is the number of texts.
polygons (Sequence[np.ndarray]): The polygons to draw. The length
of polygons should be the same as the number of bboxes.
edge_labels (np.ndarray or torch.Tensor): The edge labels to draw.
The shape of edge_labels should be (N, N), where N is the
number of texts.
texts (Sequence[str]): The texts to draw. The length of texts
should be the same as the number of bboxes.
class_names (dict): The class names for bbox labels.
is_openset (bool): Whether the dataset is openset. Defaults to
False.
arrow_colors (str, optional): The colors of arrows. Refer to
`matplotlib.colors` for full list of formats that are accepted.
Defaults to 'g'.
Returns:
np.ndarray: The image with instances drawn.
"""
img_shape = image.shape[:2]
empty_shape = (img_shape[0], img_shape[1], 3)
text_image = np.full(empty_shape, 255, dtype=np.uint8)
text_image = self.get_labels_image(
text_image,
texts,
bboxes,
font_families=self.font_families,
font_properties=self.font_properties)
classes_image = np.full(empty_shape, 255, dtype=np.uint8)
bbox_classes = [class_names[int(i)]['name'] for i in bbox_labels]
classes_image = self.get_labels_image(
classes_image,
bbox_classes,
bboxes,
font_families=self.font_families,
font_properties=self.font_properties)
if polygons:
polygons = [polygon.reshape(-1, 2) for polygon in polygons]
image = self.get_polygons_image(
image, polygons, filling=True, colors=self.PALETTE)
text_image = self.get_polygons_image(
text_image, polygons, colors=self.PALETTE)
classes_image = self.get_polygons_image(
classes_image, polygons, colors=self.PALETTE)
else:
image = self.get_bboxes_image(
image, bboxes, filling=True, colors=self.PALETTE)
text_image = self.get_bboxes_image(
text_image, bboxes, colors=self.PALETTE)
classes_image = self.get_bboxes_image(
classes_image, bboxes, colors=self.PALETTE)
cat_image = [image, text_image, classes_image]
if is_openset:
edge_image = np.full(empty_shape, 255, dtype=np.uint8)
edge_image = self._draw_edge_label(edge_image, edge_labels, bboxes,
texts, arrow_colors)
cat_image.append(edge_image)
return self._cat_image(cat_image, axis=1)
def add_datasample(self,
name: str,
image: np.ndarray,
data_sample: Optional['KIEDataSample'] = None,
draw_gt: bool = True,
draw_pred: bool = True,
show: bool = False,
wait_time: int = 0,
pred_score_thr: float = None,
out_file: Optional[str] = None,
step: int = 0) -> None:
"""Draw datasample and save to all backends.
- If GT and prediction are plotted at the same time, they are
displayed in a stitched image where the left image is the
ground truth and the right image is the prediction.
- If ``show`` is True, all storage backends are ignored, and
the images will be displayed in a local window.
- If ``out_file`` is specified, the drawn image will be
saved to ``out_file``. This is usually used when the display
is not available.
Args:
name (str): The image identifier.
image (np.ndarray): The image to draw.
data_sample (:obj:`KIEDataSample`, optional):
KIEDataSample which contains gt and prediction. Defaults
to None.
draw_gt (bool): Whether to draw GT KIEDataSample.
Defaults to True.
draw_pred (bool): Whether to draw Predicted KIEDataSample.
Defaults to True.
show (bool): Whether to display the drawn image. Default to False.
wait_time (float): The interval of show (s). Defaults to 0.
pred_score_thr (float): The threshold to visualize the bboxes
and masks. Defaults to 0.3.
out_file (str): Path to output file. Defaults to None.
step (int): Global step value to record. Defaults to 0.
"""
cat_images = list()
if draw_gt:
gt_bboxes = data_sample.gt_instances.bboxes
gt_labels = data_sample.gt_instances.labels
gt_texts = data_sample.gt_instances.texts
gt_polygons = data_sample.gt_instances.get('polygons', None)
gt_edge_labels = data_sample.gt_instances.get('edge_labels', None)
gt_img_data = self._draw_instances(image, gt_labels, gt_bboxes,
gt_polygons, gt_edge_labels,
gt_texts,
self.dataset_meta['category'],
self.is_openset, 'g')
cat_images.append(gt_img_data)
if draw_pred:
gt_bboxes = data_sample.gt_instances.bboxes
pred_labels = data_sample.pred_instances.labels
gt_texts = data_sample.gt_instances.texts
gt_polygons = data_sample.gt_instances.get('polygons', None)
pred_edge_labels = data_sample.pred_instances.get(
'edge_labels', None)
pred_img_data = self._draw_instances(image, pred_labels, gt_bboxes,
gt_polygons, pred_edge_labels,
gt_texts,
self.dataset_meta['category'],
self.is_openset, 'r')
cat_images.append(pred_img_data)
cat_images = self._cat_image(cat_images, axis=0)
if cat_images is None:
cat_images = image
if show:
self.show(cat_images, win_name=name, wait_time=wait_time)
else:
self.add_image(name, cat_images, step)
if out_file is not None:
mmcv.imwrite(cat_images[..., ::-1], out_file)
self.set_image(cat_images)
return self.get_image()
def draw_arrows(self,
x_data: Union[np.ndarray, torch.Tensor],
y_data: Union[np.ndarray, torch.Tensor],
colors: Union[str, tuple, List[str], List[tuple]] = 'C1',
line_widths: Union[Union[int, float],
List[Union[int, float]]] = 1,
line_styles: Union[str, List[str]] = '-',
arrow_tail_widths: Union[Union[int, float],
List[Union[int, float]]] = 0.001,
arrow_head_widths: Union[Union[int, float],
List[Union[int, float]]] = None,
arrow_head_lengths: Union[Union[int, float],
List[Union[int, float]]] = None,
arrow_shapes: Union[str, List[str]] = 'full',
overhangs: Union[int, List[int]] = 0) -> 'Visualizer':
"""Draw single or multiple arrows.
Args:
x_data (np.ndarray or torch.Tensor): The x coordinate of
each line' start and end points.
y_data (np.ndarray, torch.Tensor): The y coordinate of
each line' start and end points.
colors (str or tuple or list[str or tuple]): The colors of
lines. ``colors`` can have the same length with lines or just
single value. If ``colors`` is single value, all the lines
will have the same colors. Reference to
https://matplotlib.org/stable/gallery/color/named_colors.html
for more details. Defaults to 'g'.
line_widths (int or float or list[int or float]):
The linewidth of lines. ``line_widths`` can have
the same length with lines or just single value.
If ``line_widths`` is single value, all the lines will
have the same linewidth. Defaults to 2.
line_styles (str or list[str]]): The linestyle of lines.
``line_styles`` can have the same length with lines or just
single value. If ``line_styles`` is single value, all the
lines will have the same linestyle. Defaults to '-'.
arrow_tail_widths (int or float or list[int, float]):
The width of arrow tails. ``arrow_tail_widths`` can have
the same length with lines or just single value. If
``arrow_tail_widths`` is single value, all the lines will
have the same width. Defaults to 0.001.
arrow_head_widths (int or float or list[int, float]):
The width of arrow heads. ``arrow_head_widths`` can have
the same length with lines or just single value. If
``arrow_head_widths`` is single value, all the lines will
have the same width. Defaults to None.
arrow_head_lengths (int or float or list[int, float]):
The length of arrow heads. ``arrow_head_lengths`` can have
the same length with lines or just single value. If
``arrow_head_lengths`` is single value, all the lines will
have the same length. Defaults to None.
arrow_shapes (str or list[str]]): The shapes of arrow heads.
``arrow_shapes`` can have the same length with lines or just
single value. If ``arrow_shapes`` is single value, all the
lines will have the same shape. Defaults to 'full'.
overhangs (int or list[int]]): The overhangs of arrow heads.
``overhangs`` can have the same length with lines or just
single value. If ``overhangs`` is single value, all the lines
will have the same overhangs. Defaults to 0.
"""
check_type('x_data', x_data, (np.ndarray, torch.Tensor))
x_data = tensor2ndarray(x_data)
check_type('y_data', y_data, (np.ndarray, torch.Tensor))
y_data = tensor2ndarray(y_data)
assert x_data.shape == y_data.shape, (
'`x_data` and `y_data` should have the same shape')
assert x_data.shape[-1] == 2, (
f'The shape of `x_data` should be (N, 2), but got {x_data.shape}')
if len(x_data.shape) == 1:
x_data = x_data[None]
y_data = y_data[None]
number_arrow = x_data.shape[0]
check_type_and_length('colors', colors, (str, tuple, list),
number_arrow)
colors = value2list(colors, (str, tuple), number_arrow)
colors = color_val_matplotlib(colors) # type: ignore
check_type_and_length('line_widths', line_widths, (int, float),
number_arrow)
line_widths = value2list(line_widths, (int, float), number_arrow)
check_type_and_length('arrow_tail_widths', arrow_tail_widths,
(int, float), number_arrow)
check_type_and_length('line_styles', line_styles, str, number_arrow)
line_styles = value2list(line_styles, str, number_arrow)
arrow_tail_widths = value2list(arrow_tail_widths, (int, float),
number_arrow)
check_type_and_length('arrow_head_widths', arrow_head_widths,
(int, float, type(None)), number_arrow)
arrow_head_widths = value2list(arrow_head_widths,
(int, float, type(None)), number_arrow)
check_type_and_length('arrow_head_lengths', arrow_head_lengths,
(int, float, type(None)), number_arrow)
arrow_head_lengths = value2list(arrow_head_lengths,
(int, float, type(None)), number_arrow)
check_type_and_length('arrow_shapes', arrow_shapes, (str, list),
number_arrow)
arrow_shapes = value2list(arrow_shapes, (str, list), number_arrow)
check_type('overhang', overhangs, int)
overhangs = value2list(overhangs, int, number_arrow)
lines = np.concatenate(
(x_data.reshape(-1, 2, 1), y_data.reshape(-1, 2, 1)), axis=-1)
if not self._is_posion_valid(lines):
warnings.warn(
'Warning: The line is out of bounds,'
' the drawn line may not be in the image', UserWarning)
arrows = []
for i in range(number_arrow):
arrows.append(
FancyArrow(
*tuple(lines[i, 0]),
*tuple(lines[i, 1] - lines[i, 0]),
linestyle=line_styles[i],
color=colors[i],
length_includes_head=True,
width=arrow_tail_widths[i],
head_width=arrow_head_widths[i],
head_length=arrow_head_lengths[i],
overhang=overhangs[i],
shape=arrow_shapes[i],
linewidth=line_widths[i]))
p = PatchCollection(arrows, match_original=True)
self.ax_save.add_collection(p)
return self
|