File size: 4,437 Bytes
174ad5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import math
import os.path as osp

import mmcv
import mmengine

from mmocr.utils import convert_annotations


def parse_args():
    parser = argparse.ArgumentParser(
        description='Generate training and validation set of ArT ')
    parser.add_argument('root_path', help='Root dir path of ArT')
    parser.add_argument(
        '--val-ratio', help='Split ratio for val set', default=0.0, type=float)
    args = parser.parse_args()
    return args


def collect_art_info(root_path, split, ratio, print_every=1000):
    """Collect the annotation information.

    The annotation format is as the following:
    {
        'gt_1726': # 'gt_1726' is file name
        [
            {
                'transcription': '燎申集团',
                'points': [
                    [141, 199],
                    [237, 201],
                    [313, 236],
                    [357, 283],
                    [359, 300],
                    [309, 261],
                    [233, 230],
                    [140, 231]
                ],
                'language': 'Chinese',
                'illegibility': False
            },
            ...
        ],
        ...
    }


    Args:
        root_path (str): Root path to the dataset
        split (str): Dataset split, which should be 'train' or 'val'
        ratio (float): Split ratio for val set
        print_every (int): Print log info per iteration

    Returns:
        img_info (dict): The dict of the img and annotation information
    """

    annotation_path = osp.join(root_path, 'annotations/train_labels.json')
    if not osp.exists(annotation_path):
        raise Exception(
            f'{annotation_path} not exists, please check and try again.')

    annotation = mmengine.load(annotation_path)
    img_prefixes = annotation.keys()

    trn_files, val_files = [], []
    if ratio > 0:
        for i, file in enumerate(img_prefixes):
            if i % math.floor(1 / ratio):
                trn_files.append(file)
            else:
                val_files.append(file)
    else:
        trn_files, val_files = img_prefixes, []
    print(f'training #{len(trn_files)}, val #{len(val_files)}')

    if split == 'train':
        img_prefixes = trn_files
    elif split == 'val':
        img_prefixes = val_files
    else:
        raise NotImplementedError

    img_infos = []
    for i, prefix in enumerate(img_prefixes):
        if i > 0 and i % print_every == 0:
            print(f'{i}/{len(img_prefixes)}')
        img_file = osp.join(root_path, 'imgs', prefix + '.jpg')
        # Skip not exist images
        if not osp.exists(img_file):
            continue
        img = mmcv.imread(img_file)

        img_info = dict(
            file_name=osp.join(osp.basename(img_file)),
            height=img.shape[0],
            width=img.shape[1],
            segm_file=osp.join(osp.basename(annotation_path)))

        anno_info = []
        for ann in annotation[prefix]:
            segmentation = []
            for x, y in ann['points']:
                segmentation.append(max(0, x))
                segmentation.append(max(0, y))
            xs, ys = segmentation[::2], segmentation[1::2]
            x, y = min(xs), min(ys)
            w, h = max(xs) - x, max(ys) - y
            bbox = [x, y, w, h]
            if ann['transcription'] == '###' or ann['illegibility']:
                iscrowd = 1
            else:
                iscrowd = 0
            anno = dict(
                iscrowd=iscrowd,
                category_id=1,
                bbox=bbox,
                area=w * h,
                segmentation=[segmentation])
            anno_info.append(anno)
        img_info.update(anno_info=anno_info)
        img_infos.append(img_info)

    return img_infos


def main():
    args = parse_args()
    root_path = args.root_path
    print('Processing training set...')
    training_infos = collect_art_info(root_path, 'train', args.val_ratio)
    convert_annotations(training_infos,
                        osp.join(root_path, 'instances_training.json'))
    if args.val_ratio > 0:
        print('Processing validation set...')
        val_infos = collect_art_info(root_path, 'val', args.val_ratio)
        convert_annotations(val_infos, osp.join(root_path,
                                                'instances_val.json'))
    print('Finish')


if __name__ == '__main__':
    main()