Spaces:
Sleeping
Sleeping
File size: 4,437 Bytes
174ad5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import math
import os.path as osp
import mmcv
import mmengine
from mmocr.utils import convert_annotations
def parse_args():
parser = argparse.ArgumentParser(
description='Generate training and validation set of ArT ')
parser.add_argument('root_path', help='Root dir path of ArT')
parser.add_argument(
'--val-ratio', help='Split ratio for val set', default=0.0, type=float)
args = parser.parse_args()
return args
def collect_art_info(root_path, split, ratio, print_every=1000):
"""Collect the annotation information.
The annotation format is as the following:
{
'gt_1726': # 'gt_1726' is file name
[
{
'transcription': '燎申集团',
'points': [
[141, 199],
[237, 201],
[313, 236],
[357, 283],
[359, 300],
[309, 261],
[233, 230],
[140, 231]
],
'language': 'Chinese',
'illegibility': False
},
...
],
...
}
Args:
root_path (str): Root path to the dataset
split (str): Dataset split, which should be 'train' or 'val'
ratio (float): Split ratio for val set
print_every (int): Print log info per iteration
Returns:
img_info (dict): The dict of the img and annotation information
"""
annotation_path = osp.join(root_path, 'annotations/train_labels.json')
if not osp.exists(annotation_path):
raise Exception(
f'{annotation_path} not exists, please check and try again.')
annotation = mmengine.load(annotation_path)
img_prefixes = annotation.keys()
trn_files, val_files = [], []
if ratio > 0:
for i, file in enumerate(img_prefixes):
if i % math.floor(1 / ratio):
trn_files.append(file)
else:
val_files.append(file)
else:
trn_files, val_files = img_prefixes, []
print(f'training #{len(trn_files)}, val #{len(val_files)}')
if split == 'train':
img_prefixes = trn_files
elif split == 'val':
img_prefixes = val_files
else:
raise NotImplementedError
img_infos = []
for i, prefix in enumerate(img_prefixes):
if i > 0 and i % print_every == 0:
print(f'{i}/{len(img_prefixes)}')
img_file = osp.join(root_path, 'imgs', prefix + '.jpg')
# Skip not exist images
if not osp.exists(img_file):
continue
img = mmcv.imread(img_file)
img_info = dict(
file_name=osp.join(osp.basename(img_file)),
height=img.shape[0],
width=img.shape[1],
segm_file=osp.join(osp.basename(annotation_path)))
anno_info = []
for ann in annotation[prefix]:
segmentation = []
for x, y in ann['points']:
segmentation.append(max(0, x))
segmentation.append(max(0, y))
xs, ys = segmentation[::2], segmentation[1::2]
x, y = min(xs), min(ys)
w, h = max(xs) - x, max(ys) - y
bbox = [x, y, w, h]
if ann['transcription'] == '###' or ann['illegibility']:
iscrowd = 1
else:
iscrowd = 0
anno = dict(
iscrowd=iscrowd,
category_id=1,
bbox=bbox,
area=w * h,
segmentation=[segmentation])
anno_info.append(anno)
img_info.update(anno_info=anno_info)
img_infos.append(img_info)
return img_infos
def main():
args = parse_args()
root_path = args.root_path
print('Processing training set...')
training_infos = collect_art_info(root_path, 'train', args.val_ratio)
convert_annotations(training_infos,
osp.join(root_path, 'instances_training.json'))
if args.val_ratio > 0:
print('Processing validation set...')
val_infos = collect_art_info(root_path, 'val', args.val_ratio)
convert_annotations(val_infos, osp.join(root_path,
'instances_val.json'))
print('Finish')
if __name__ == '__main__':
main()
|