File size: 4,739 Bytes
174ad5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import math
import os.path as osp

import mmcv
import mmengine
import numpy as np

from mmocr.utils import dump_ocr_data


def parse_args():
    parser = argparse.ArgumentParser(
        description='Generate training, validation and test set of IMGUR ')
    parser.add_argument('root_path', help='Root dir path of IMGUR')
    args = parser.parse_args()

    return args


def collect_imgur_info(root_path, annotation_filename, print_every=1000):

    annotation_path = osp.join(root_path, 'annotations', annotation_filename)
    if not osp.exists(annotation_path):
        raise Exception(
            f'{annotation_path} not exists, please check and try again.')

    annotation = mmengine.load(annotation_path)
    images = annotation['index_to_ann_map'].keys()
    img_infos = []
    for i, img_name in enumerate(images):
        if i >= 0 and i % print_every == 0:
            print(f'{i}/{len(images)}')

        img_path = osp.join(root_path, 'imgs', img_name + '.jpg')

        # Skip not exist images
        if not osp.exists(img_path):
            continue

        img = mmcv.imread(img_path, 'unchanged')

        # Skip broken images
        if img is None:
            continue

        img_info = dict(
            file_name=img_name + '.jpg',
            height=img.shape[0],
            width=img.shape[1])

        anno_info = []
        for ann_id in annotation['index_to_ann_map'][img_name]:
            ann = annotation['ann_id'][ann_id]

            # The original annotation is oriented rects [x, y, w, h, a]
            box = np.fromstring(
                ann['bounding_box'][1:-2], sep=',', dtype=float)
            quadrilateral = convert_oriented_box(box)

            xs, ys = quadrilateral[::2], quadrilateral[1::2]
            x = max(0, math.floor(min(xs)))
            y = max(0, math.floor(min(ys)))
            w = math.floor(max(xs)) - x
            h = math.floor(max(ys)) - y
            bbox = [x, y, w, h]
            segmentation = quadrilateral

            anno = dict(
                iscrowd=0,
                category_id=1,
                bbox=bbox,
                area=w * h,
                segmentation=[segmentation])
            anno_info.append(anno)
        img_info.update(anno_info=anno_info)
        img_infos.append(img_info)

    return img_infos


def convert_oriented_box(box):

    x_ctr, y_ctr, width, height, angle = box[:5]
    angle = -angle * math.pi / 180

    tl_x, tl_y, br_x, br_y = -width / 2, -height / 2, width / 2, height / 2
    rect = np.array([[tl_x, br_x, br_x, tl_x], [tl_y, tl_y, br_y, br_y]])
    R = np.array([[np.cos(angle), -np.sin(angle)],
                  [np.sin(angle), np.cos(angle)]])
    poly = R.dot(rect)
    x0, x1, x2, x3 = poly[0, :4] + x_ctr
    y0, y1, y2, y3 = poly[1, :4] + y_ctr
    poly = np.array([x0, y0, x1, y1, x2, y2, x3, y3], dtype=np.float32)
    poly = get_best_begin_point_single(poly)

    return poly.tolist()


def get_best_begin_point_single(coordinate):

    x1, y1, x2, y2, x3, y3, x4, y4 = coordinate
    xmin = min(x1, x2, x3, x4)
    ymin = min(y1, y2, y3, y4)
    xmax = max(x1, x2, x3, x4)
    ymax = max(y1, y2, y3, y4)
    combine = [[[x1, y1], [x2, y2], [x3, y3], [x4, y4]],
               [[x2, y2], [x3, y3], [x4, y4], [x1, y1]],
               [[x3, y3], [x4, y4], [x1, y1], [x2, y2]],
               [[x4, y4], [x1, y1], [x2, y2], [x3, y3]]]
    dst_coordinate = [[xmin, ymin], [xmax, ymin], [xmax, ymax], [xmin, ymax]]
    force = 100000000.0
    force_flag = 0
    for i in range(4):
        temp_force = cal_line_length(combine[i][0], dst_coordinate[0]) \
            + cal_line_length(combine[i][1], dst_coordinate[1]) \
            + cal_line_length(combine[i][2], dst_coordinate[2]) \
            + cal_line_length(combine[i][3], dst_coordinate[3])
        if temp_force < force:
            force = temp_force
            force_flag = i
    if force_flag != 0:
        pass

    return np.array(combine[force_flag]).reshape(8)


def cal_line_length(point1, point2):

    return math.sqrt(
        math.pow(point1[0] - point2[0], 2) +
        math.pow(point1[1] - point2[1], 2))


def main():
    args = parse_args()
    root_path = args.root_path

    for split in ['train', 'val', 'test']:
        print(f'Processing {split} set...')
        with mmengine.Timer(
                print_tmpl='It takes {}s to convert IMGUR annotation'):
            anno_infos = collect_imgur_info(
                root_path, f'imgur5k_annotations_{split}.json')
            dump_ocr_data(anno_infos,
                          osp.join(root_path, f'instances_{split}.json'),
                          'textdet')


if __name__ == '__main__':
    main()