Spaces:
Sleeping
Sleeping
File size: 6,265 Bytes
174ad5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import math
import os
import os.path as osp
import mmcv
import mmengine
from mmocr.utils import crop_img, dump_ocr_data
def collect_files(img_dir, gt_dir):
"""Collect all images and their corresponding groundtruth files.
Args:
img_dir (str): The image directory
gt_dir (str): The groundtruth directory
Returns:
files (list): The list of tuples (img_file, groundtruth_file)
"""
assert isinstance(img_dir, str)
assert img_dir
assert isinstance(gt_dir, str)
assert gt_dir
ann_list, imgs_list = [], []
for gt_file in os.listdir(gt_dir):
ann_list.append(osp.join(gt_dir, gt_file))
imgs_list.append(osp.join(img_dir, gt_file.replace('.json', '.png')))
files = list(zip(sorted(imgs_list), sorted(ann_list)))
assert len(files), f'No images found in {img_dir}'
print(f'Loaded {len(files)} images from {img_dir}')
return files
def collect_annotations(files, nproc=1):
"""Collect the annotation information.
Args:
files (list): The list of tuples (image_file, groundtruth_file)
nproc (int): The number of process to collect annotations
Returns:
images (list): The list of image information dicts
"""
assert isinstance(files, list)
assert isinstance(nproc, int)
if nproc > 1:
images = mmengine.track_parallel_progress(
load_img_info, files, nproc=nproc)
else:
images = mmengine.track_progress(load_img_info, files)
return images
def load_img_info(files):
"""Load the information of one image.
Args:
files (tuple): The tuple of (img_file, groundtruth_file)
Returns:
img_info (dict): The dict of the img and annotation information
"""
assert isinstance(files, tuple)
img_file, gt_file = files
assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split(
'.')[0]
# read imgs while ignoring orientations
img = mmcv.imread(img_file, 'unchanged')
img_info = dict(
file_name=osp.join(osp.basename(img_file)),
height=img.shape[0],
width=img.shape[1],
segm_file=osp.join(osp.basename(gt_file)))
if osp.splitext(gt_file)[1] == '.json':
img_info = load_json_info(gt_file, img_info)
else:
raise NotImplementedError
return img_info
def load_json_info(gt_file, img_info):
"""Collect the annotation information.
Args:
gt_file (str): The path to ground-truth
img_info (dict): The dict of the img and annotation information
Returns:
img_info (dict): The dict of the img and annotation information
"""
annotation = mmengine.load(gt_file)
anno_info = []
for form in annotation['form']:
for ann in form['words']:
# Ignore illegible samples
if len(ann['text']) == 0:
continue
x1, y1, x2, y2 = ann['box']
x = max(0, min(math.floor(x1), math.floor(x2)))
y = max(0, min(math.floor(y1), math.floor(y2)))
w, h = math.ceil(abs(x2 - x1)), math.ceil(abs(y2 - y1))
bbox = [x, y, x + w, y, x + w, y + h, x, y + h]
word = ann['text']
anno = dict(bbox=bbox, word=word)
anno_info.append(anno)
img_info.update(anno_info=anno_info)
return img_info
def generate_ann(root_path, split, image_infos, preserve_vertical):
"""Generate cropped annotations and label txt file.
Args:
root_path (str): The root path of the dataset
split (str): The split of dataset. Namely: training or test
image_infos (list[dict]): A list of dicts of the img and
annotation information
preserve_vertical (bool): Whether to preserve vertical texts
"""
dst_image_root = osp.join(root_path, 'crops', split)
if split == 'training':
dst_label_file = osp.join(root_path, 'train_label.json')
elif split == 'test':
dst_label_file = osp.join(root_path, 'test_label.json')
os.makedirs(dst_image_root, exist_ok=True)
img_info = []
for image_info in image_infos:
index = 1
src_img_path = osp.join(root_path, 'imgs', image_info['file_name'])
image = mmcv.imread(src_img_path)
src_img_root = image_info['file_name'].split('.')[0]
for anno in image_info['anno_info']:
word = anno['word']
dst_img = crop_img(image, anno['bbox'])
h, w, _ = dst_img.shape
# Skip invalid annotations
if min(dst_img.shape) == 0:
continue
# Skip vertical texts
if not preserve_vertical and h / w > 2:
continue
dst_img_name = f'{src_img_root}_{index}.png'
index += 1
dst_img_path = osp.join(dst_image_root, dst_img_name)
mmcv.imwrite(dst_img, dst_img_path)
img_info.append({
'file_name': dst_img_name,
'anno_info': [{
'text': word
}]
})
dump_ocr_data(img_info, dst_label_file, 'textrecog')
def parse_args():
parser = argparse.ArgumentParser(
description='Generate training and test set of FUNSD ')
parser.add_argument('root_path', help='Root dir path of FUNSD')
parser.add_argument(
'--preserve_vertical',
help='Preserve samples containing vertical texts',
action='store_true')
parser.add_argument(
'--nproc', default=1, type=int, help='Number of processes')
args = parser.parse_args()
return args
def main():
args = parse_args()
root_path = args.root_path
for split in ['training', 'test']:
print(f'Processing {split} set...')
with mmengine.Timer(
print_tmpl='It takes {}s to convert FUNSD annotation'):
files = collect_files(
osp.join(root_path, 'imgs'),
osp.join(root_path, 'annotations', split))
image_infos = collect_annotations(files, nproc=args.nproc)
generate_ann(root_path, split, image_infos, args.preserve_vertical)
if __name__ == '__main__':
main()
|