File size: 2,622 Bytes
9bf4bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
model = dict(
    type='TextSnake',
    backbone=dict(
        type='mmdet.ResNet',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=-1,
        norm_cfg=dict(type='BN', requires_grad=True),
        init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'),
        norm_eval=True,
        style='caffe'),
    neck=dict(
        type='FPN_UNet', in_channels=[256, 512, 1024, 2048], out_channels=32),
    det_head=dict(
        type='TextSnakeHead',
        in_channels=32,
        module_loss=dict(type='TextSnakeModuleLoss'),
        postprocessor=dict(
            type='TextSnakePostprocessor', text_repr_type='poly')),
    data_preprocessor=dict(
        type='TextDetDataPreprocessor',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        bgr_to_rgb=True,
        pad_size_divisor=32))

train_pipeline = [
    dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
    dict(
        type='LoadOCRAnnotations',
        with_bbox=True,
        with_polygon=True,
        with_label=True),
    dict(
        type='TorchVisionWrapper',
        op='ColorJitter',
        brightness=32.0 / 255,
        saturation=0.5),
    dict(
        type='RandomApply',
        transforms=[dict(type='RandomCrop', min_side_ratio=0.3)],
        prob=0.65),
    dict(
        type='RandomRotate',
        max_angle=20,
        pad_with_fixed_color=False,
        use_canvas=True),
    dict(
        type='BoundedScaleAspectJitter',
        long_size_bound=800,
        short_size_bound=480,
        ratio_range=(0.7, 1.3),
        aspect_ratio_range=(0.9, 1.1)),
    dict(
        type='RandomChoice',
        transforms=[[
            dict(type='Resize', scale=800, keep_ratio=True),
            dict(type='SourceImagePad', target_scale=800)
        ],
                    dict(type='Resize', scale=800, keep_ratio=False)],
        prob=[0.4, 0.6]),
    dict(type='RandomFlip', prob=0.5, direction='horizontal'),
    dict(
        type='PackTextDetInputs',
        meta_keys=('img_path', 'ori_shape', 'img_shape'))
]

test_pipeline = [
    dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
    dict(type='Resize', scale=(1333, 736), keep_ratio=True),
    # add loading annotation after ``Resize`` because ground truth
    # does not need to do resize data transform
    dict(
        type='LoadOCRAnnotations',
        with_polygon=True,
        with_bbox=True,
        with_label=True),
    dict(
        type='PackTextDetInputs',
        meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
]