Spaces:
Sleeping
Sleeping
File size: 3,986 Bytes
9bf4bd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
dictionary = dict(
type='Dictionary',
dict_file='{{ fileDirname }}/../../../dicts/english_digits_symbols.txt',
with_start=True,
with_end=True,
same_start_end=True,
with_padding=True,
with_unknown=True)
model = dict(
type='RobustScanner',
data_preprocessor=dict(
type='TextRecogDataPreprocessor',
mean=[127, 127, 127],
std=[127, 127, 127]),
backbone=dict(type='ResNet31OCR'),
encoder=dict(
type='ChannelReductionEncoder', in_channels=512, out_channels=128),
decoder=dict(
type='RobustScannerFuser',
hybrid_decoder=dict(
type='SequenceAttentionDecoder', dim_input=512, dim_model=128),
position_decoder=dict(
type='PositionAttentionDecoder', dim_input=512, dim_model=128),
in_channels=[512, 512],
postprocessor=dict(type='AttentionPostprocessor'),
module_loss=dict(
type='CEModuleLoss', ignore_first_char=True, reduction='mean'),
dictionary=dictionary,
max_seq_len=30))
train_pipeline = [
dict(type='LoadImageFromFile', ignore_empty=True, min_size=2),
dict(type='LoadOCRAnnotations', with_text=True),
dict(
type='RescaleToHeight',
height=48,
min_width=48,
max_width=160,
width_divisor=4),
dict(type='PadToWidth', width=160),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RescaleToHeight',
height=48,
min_width=48,
max_width=160,
width_divisor=4),
dict(type='PadToWidth', width=160),
# add loading annotation after ``Resize`` because ground truth
# does not need to do resize data transform
dict(type='LoadOCRAnnotations', with_text=True),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
]
tta_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='TestTimeAug',
transforms=[
[
dict(
type='ConditionApply',
true_transforms=[
dict(
type='ImgAugWrapper',
args=[dict(cls='Rot90', k=0, keep_size=False)])
],
condition="results['img_shape'][1]<results['img_shape'][0]"
),
dict(
type='ConditionApply',
true_transforms=[
dict(
type='ImgAugWrapper',
args=[dict(cls='Rot90', k=1, keep_size=False)])
],
condition="results['img_shape'][1]<results['img_shape'][0]"
),
dict(
type='ConditionApply',
true_transforms=[
dict(
type='ImgAugWrapper',
args=[dict(cls='Rot90', k=3, keep_size=False)])
],
condition="results['img_shape'][1]<results['img_shape'][0]"
),
],
[
dict(
type='RescaleToHeight',
height=48,
min_width=48,
max_width=160,
width_divisor=4),
],
[dict(type='PadToWidth', width=160)],
# add loading annotation after ``Resize`` because ground truth
# does not need to do resize data transform
[dict(type='LoadOCRAnnotations', with_text=True)],
[
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape',
'valid_ratio'))
]
])
]
|