Spaces:
Sleeping
Sleeping
File size: 32,125 Bytes
9bf4bd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
import random
from typing import Dict, List, Sequence, Tuple, Union
import cv2
import mmcv
import numpy as np
from mmcv.transforms import RandomFlip as MMCV_RandomFlip
from mmcv.transforms.base import BaseTransform
from mmcv.transforms.utils import avoid_cache_randomness, cache_randomness
from shapely.geometry import Polygon as plg
from mmocr.registry import TRANSFORMS
from mmocr.utils import crop_polygon, poly2bbox, poly_intersection
@TRANSFORMS.register_module()
@avoid_cache_randomness
class BoundedScaleAspectJitter(BaseTransform):
"""First randomly rescale the image so that the longside and shortside of
the image are around the bound; then jitter its aspect ratio.
Required Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_polygons (optional)
Modified Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_polygons (optional)
Added Keys:
- scale
- scale_factor
- keep_ratio
Args:
long_size_bound (int): The approximate bound for long size.
short_size_bound (int): The approximate bound for short size.
size_jitter_range (tuple(float, float)): Range of the ratio used
to jitter the size. Defaults to (0.7, 1.3).
aspect_ratio_jitter_range (tuple(float, float)): Range of the ratio
used to jitter its aspect ratio. Defaults to (0.9, 1.1).
resize_type (str): The type of resize class to use. Defaults to
"Resize".
**resize_kwargs: Other keyword arguments for the ``resize_type``.
"""
def __init__(
self,
long_size_bound: int,
short_size_bound: int,
ratio_range: Tuple[float, float] = (0.7, 1.3),
aspect_ratio_range: Tuple[float, float] = (0.9, 1.1),
resize_type: str = 'Resize',
**resize_kwargs,
) -> None:
super().__init__()
self.ratio_range = ratio_range
self.aspect_ratio_range = aspect_ratio_range
self.long_size_bound = long_size_bound
self.short_size_bound = short_size_bound
self.resize_cfg = dict(type=resize_type, **resize_kwargs)
# create an empty Reisize object
self.resize_cfg.update(dict(scale=0))
self.resize = TRANSFORMS.build(self.resize_cfg)
def _sample_from_range(self, range: Tuple[float, float]) -> float:
"""A ratio will be randomly sampled from the range specified by
``range``.
Args:
ratio_range (tuple[float]): The minimum and maximum ratio.
Returns:
float: A ratio randomly sampled from the range.
"""
min_value, max_value = min(range), max(range)
value = np.random.random_sample() * (max_value - min_value) + min_value
return value
def transform(self, results: Dict) -> Dict:
h, w = results['img'].shape[:2]
new_scale = 1
if max(h, w) > self.long_size_bound:
new_scale = self.long_size_bound / max(h, w)
jitter_ratio = self._sample_from_range(self.ratio_range)
jitter_ratio = new_scale * jitter_ratio
if min(h, w) * jitter_ratio <= self.short_size_bound:
jitter_ratio = (self.short_size_bound + 10) * 1.0 / min(h, w)
aspect = self._sample_from_range(self.aspect_ratio_range)
h_scale = jitter_ratio * math.sqrt(aspect)
w_scale = jitter_ratio / math.sqrt(aspect)
new_h = int(h * h_scale)
new_w = int(w * w_scale)
self.resize.scale = (new_w, new_h)
return self.resize(results)
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(long_size_bound = {self.long_size_bound}, '
repr_str += f'short_size_bound = {self.short_size_bound}, '
repr_str += f'ratio_range = {self.ratio_range}, '
repr_str += f'aspect_ratio_range = {self.aspect_ratio_range}, '
repr_str += f'resize_cfg = {self.resize_cfg})'
return repr_str
@TRANSFORMS.register_module()
class RandomFlip(MMCV_RandomFlip):
"""Flip the image & bbox polygon.
There are 3 flip modes:
- ``prob`` is float, ``direction`` is string: the image will be
``direction``ly flipped with probability of ``prob`` .
E.g., ``prob=0.5``, ``direction='horizontal'``,
then image will be horizontally flipped with probability of 0.5.
- ``prob`` is float, ``direction`` is list of string: the image will
be ``direction[i]``ly flipped with probability of
``prob/len(direction)``.
E.g., ``prob=0.5``, ``direction=['horizontal', 'vertical']``,
then image will be horizontally flipped with probability of 0.25,
vertically with probability of 0.25.
- ``prob`` is list of float, ``direction`` is list of string:
given ``len(prob) == len(direction)``, the image will
be ``direction[i]``ly flipped with probability of ``prob[i]``.
E.g., ``prob=[0.3, 0.5]``, ``direction=['horizontal',
'vertical']``, then image will be horizontally flipped with
probability of 0.3, vertically with probability of 0.5.
Required Keys:
- img
- gt_bboxes (optional)
- gt_polygons (optional)
Modified Keys:
- img
- gt_bboxes (optional)
- gt_polygons (optional)
Added Keys:
- flip
- flip_direction
Args:
prob (float | list[float], optional): The flipping probability.
Defaults to None.
direction(str | list[str]): The flipping direction. Options
If input is a list, the length must equal ``prob``. Each
element in ``prob`` indicates the flip probability of
corresponding direction. Defaults to 'horizontal'.
"""
def flip_polygons(self, polygons: Sequence[np.ndarray],
img_shape: Tuple[int, int],
direction: str) -> Sequence[np.ndarray]:
"""Flip polygons horizontally, vertically or diagonally.
Args:
polygons (list[numpy.ndarray): polygons.
img_shape (tuple[int]): Image shape (height, width)
direction (str): Flip direction. Options are 'horizontal',
'vertical' and 'diagonal'.
Returns:
list[numpy.ndarray]: Flipped polygons.
"""
h, w = img_shape
flipped_polygons = []
if direction == 'horizontal':
for polygon in polygons:
flipped_polygon = polygon.copy()
flipped_polygon[0::2] = w - polygon[0::2]
flipped_polygons.append(flipped_polygon)
elif direction == 'vertical':
for polygon in polygons:
flipped_polygon = polygon.copy()
flipped_polygon[1::2] = h - polygon[1::2]
flipped_polygons.append(flipped_polygon)
elif direction == 'diagonal':
for polygon in polygons:
flipped_polygon = polygon.copy()
flipped_polygon[0::2] = w - polygon[0::2]
flipped_polygon[1::2] = h - polygon[1::2]
flipped_polygons.append(flipped_polygon)
else:
raise ValueError(
f"Flipping direction must be 'horizontal', 'vertical', \
or 'diagnal', but got '{direction}'")
return flipped_polygons
def _flip(self, results: dict) -> None:
"""Flip images, bounding boxes and polygons.
Args:
results (dict): Result dict containing the data to transform.
"""
super()._flip(results)
# flip polygons
if results.get('gt_polygons', None) is not None:
results['gt_polygons'] = self.flip_polygons(
results['gt_polygons'], results['img'].shape[:2],
results['flip_direction'])
@TRANSFORMS.register_module()
class SourceImagePad(BaseTransform):
"""Pad Image to target size. It will randomly crop an area from the
original image and resize it to the target size, then paste the original
image to its top left corner.
Required Keys:
- img
Modified Keys:
- img
- img_shape
Added Keys:
- pad_shape
- pad_fixed_size
Args:
target_scale (int or tuple[int, int]]): The target size of padded
image. If it's an integer, then the padding size would be
(target_size, target_size). If it's tuple, then ``target_scale[0]``
should be the width and ``target_scale[1]`` should be the height.
The size of the padded image will be (target_scale[1],
target_scale[0])
crop_ratio (float or Tuple[float, float]): Relative size for the
crop region. If ``crop_ratio`` is a float, then the initial crop
size would be
``(crop_ratio * img.shape[0], crop_ratio * img.shape[1])`` . If
``crop_ratio`` is a tuple, then ``crop_ratio[0]`` is for the width
and ``crop_ratio[1]`` is for the height. The initial crop size
would be
``(crop_ratio[1] * img.shape[0], crop_ratio[0] * img.shape[1])``.
Defaults to 1./9.
"""
def __init__(self,
target_scale: Union[int, Tuple[int, int]],
crop_ratio: Union[float, Tuple[float,
float]] = 1. / 9) -> None:
self.target_scale = target_scale if isinstance(
target_scale, tuple) else (target_scale, target_scale)
self.crop_ratio = crop_ratio if isinstance(
crop_ratio, tuple) else (crop_ratio, crop_ratio)
def transform(self, results: Dict) -> Dict:
"""Pad Image to target size. It will randomly select a small area from
the original image and resize it to the target size, then paste the
original image to its top left corner.
Args:
results (Dict): Result dict containing the data to transform.
Returns:
(Dict): The transformed data.
"""
img = results['img']
h, w = img.shape[:2]
assert h <= self.target_scale[1] and w <= self.target_scale[
0], 'image size should be smaller that the target size'
h_ind = np.random.randint(0, int(h - h * self.crop_ratio[1]) + 1)
w_ind = np.random.randint(0, int(w - w * self.crop_ratio[0]) + 1)
img_cut = img[h_ind:int(h_ind + h * self.crop_ratio[1]),
w_ind:int(w_ind + w * self.crop_ratio[1])]
expand_img = mmcv.imresize(img_cut, self.target_scale)
# paste img to the top left corner of the padding region
expand_img[0:h, 0:w] = img
results['img'] = expand_img
results['img_shape'] = expand_img.shape[:2]
results['pad_shape'] = expand_img.shape
results['pad_fixed_size'] = self.target_scale
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(target_scale = {self.target_scale}, '
repr_str += f'crop_ratio = {self.crop_ratio})'
return repr_str
@TRANSFORMS.register_module()
@avoid_cache_randomness
class ShortScaleAspectJitter(BaseTransform):
"""First rescale the image for its shorter side to reach the short_size and
then jitter its aspect ratio, final rescale the shape guaranteed to be
divided by scale_divisor.
Required Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_polygons (optional)
Modified Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_polygons (optional)
Added Keys:
- scale
- scale_factor
- keep_ratio
Args:
short_size (int): Target shorter size before jittering the aspect
ratio. Defaults to 736.
short_size_jitter_range (tuple(float, float)): Range of the ratio used
to jitter the target shorter size. Defaults to (0.7, 1.3).
aspect_ratio_jitter_range (tuple(float, float)): Range of the ratio
used to jitter its aspect ratio. Defaults to (0.9, 1.1).
scale_divisor (int): The scale divisor. Defaults to 1.
resize_type (str): The type of resize class to use. Defaults to
"Resize".
**resize_kwargs: Other keyword arguments for the ``resize_type``.
"""
def __init__(self,
short_size: int = 736,
ratio_range: Tuple[float, float] = (0.7, 1.3),
aspect_ratio_range: Tuple[float, float] = (0.9, 1.1),
scale_divisor: int = 1,
resize_type: str = 'Resize',
**resize_kwargs) -> None:
super().__init__()
self.short_size = short_size
self.ratio_range = ratio_range
self.aspect_ratio_range = aspect_ratio_range
self.resize_cfg = dict(type=resize_type, **resize_kwargs)
# create a empty Reisize object
self.resize_cfg.update(dict(scale=0))
self.resize = TRANSFORMS.build(self.resize_cfg)
self.scale_divisor = scale_divisor
def _sample_from_range(self, range: Tuple[float, float]) -> float:
"""A ratio will be randomly sampled from the range specified by
``range``.
Args:
ratio_range (tuple[float]): The minimum and maximum ratio.
Returns:
float: A ratio randomly sampled from the range.
"""
min_value, max_value = min(range), max(range)
value = np.random.random_sample() * (max_value - min_value) + min_value
return value
def transform(self, results: Dict) -> Dict:
"""Short Scale Aspect Jitter.
Args:
results (dict): Result dict containing the data to transform.
Returns:
dict: The transformed data.
"""
h, w = results['img'].shape[:2]
ratio = self._sample_from_range(self.ratio_range)
scale = (ratio * self.short_size) / min(h, w)
aspect = self._sample_from_range(self.aspect_ratio_range)
h_scale = scale * math.sqrt(aspect)
w_scale = scale / math.sqrt(aspect)
new_h = round(h * h_scale)
new_w = round(w * w_scale)
new_h = math.ceil(new_h / self.scale_divisor) * self.scale_divisor
new_w = math.ceil(new_w / self.scale_divisor) * self.scale_divisor
self.resize.scale = (new_w, new_h)
return self.resize(results)
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(short_size = {self.short_size}, '
repr_str += f'ratio_range = {self.ratio_range}, '
repr_str += f'aspect_ratio_range = {self.aspect_ratio_range}, '
repr_str += f'scale_divisor = {self.scale_divisor}, '
repr_str += f'resize_cfg = {self.resize_cfg})'
return repr_str
@TRANSFORMS.register_module()
class TextDetRandomCropFlip(BaseTransform):
# TODO Rename this transformer; Refactor the redundant code.
"""Random crop and flip a patch in the image. Only used in text detection
task.
Required Keys:
- img
- gt_bboxes
- gt_polygons
Modified Keys:
- img
- gt_bboxes
- gt_polygons
Args:
pad_ratio (float): The ratio of padding. Defaults to 0.1.
crop_ratio (float): The ratio of cropping. Defaults to 0.5.
iter_num (int): Number of operations. Defaults to 1.
min_area_ratio (float): Minimal area ratio between cropped patch
and original image. Defaults to 0.2.
epsilon (float): The threshold of polygon IoU between cropped area
and polygon, which is used to avoid cropping text instances.
Defaults to 0.01.
"""
def __init__(self,
pad_ratio: float = 0.1,
crop_ratio: float = 0.5,
iter_num: int = 1,
min_area_ratio: float = 0.2,
epsilon: float = 1e-2) -> None:
if not isinstance(pad_ratio, float):
raise TypeError('`pad_ratio` should be an float, '
f'but got {type(pad_ratio)} instead')
if not isinstance(crop_ratio, float):
raise TypeError('`crop_ratio` should be a float, '
f'but got {type(crop_ratio)} instead')
if not isinstance(iter_num, int):
raise TypeError('`iter_num` should be an integer, '
f'but got {type(iter_num)} instead')
if not isinstance(min_area_ratio, float):
raise TypeError('`min_area_ratio` should be a float, '
f'but got {type(min_area_ratio)} instead')
if not isinstance(epsilon, float):
raise TypeError('`epsilon` should be a float, '
f'but got {type(epsilon)} instead')
self.pad_ratio = pad_ratio
self.epsilon = epsilon
self.crop_ratio = crop_ratio
self.iter_num = iter_num
self.min_area_ratio = min_area_ratio
@cache_randomness
def _random_prob(self) -> float:
"""Get the random prob to decide whether apply the transform.
Returns:
float: The probability
"""
return random.random()
@cache_randomness
def _random_flip_type(self) -> int:
"""Get the random flip type.
Returns:
int: The flip type index. (0: horizontal; 1: vertical; 2: both)
"""
return np.random.randint(3)
@cache_randomness
def _random_choice(self, axis: np.ndarray) -> np.ndarray:
"""Randomly select two coordinates from the axis.
Args:
axis (np.ndarray): Result dict containing the data to transform
Returns:
np.ndarray: The selected coordinates
"""
return np.random.choice(axis, size=2)
def transform(self, results: Dict) -> Dict:
"""Applying random crop flip on results.
Args:
results (dict): Result dict containing the data to transform
Returns:
dict: The transformed data
"""
assert 'img' in results, '`img` is not found in results'
for _ in range(self.iter_num):
results = self._random_crop_flip_polygons(results)
bboxes = [poly2bbox(poly) for poly in results['gt_polygons']]
results['gt_bboxes'] = np.array(
bboxes, dtype=np.float32).reshape(-1, 4)
return results
def _random_crop_flip_polygons(self, results: Dict) -> Dict:
"""Applying random crop flip on polygons.
Args:
results (dict): Result dict containing the data to transform
Returns:
dict: The transformed data
"""
if results.get('gt_polygons', None) is None:
return results
image = results['img']
polygons = results['gt_polygons']
if len(polygons) == 0 or self._random_prob() > self.crop_ratio:
return results
h, w = results['img_shape']
area = h * w
pad_h = int(h * self.pad_ratio)
pad_w = int(w * self.pad_ratio)
h_axis, w_axis = self._generate_crop_target(image, polygons, pad_h,
pad_w)
if len(h_axis) == 0 or len(w_axis) == 0:
return results
# At most 10 attempts
for _ in range(10):
polys_keep = []
polys_new = []
kept_idxs = []
xx = self._random_choice(w_axis)
yy = self._random_choice(h_axis)
xmin = np.clip(np.min(xx) - pad_w, 0, w - 1)
xmax = np.clip(np.max(xx) - pad_w, 0, w - 1)
ymin = np.clip(np.min(yy) - pad_h, 0, h - 1)
ymax = np.clip(np.max(yy) - pad_h, 0, h - 1)
if (xmax - xmin) * (ymax - ymin) < area * self.min_area_ratio:
# Skip when cropped area is too small
continue
pts = np.stack([[xmin, xmax, xmax, xmin],
[ymin, ymin, ymax, ymax]]).T.astype(np.int32)
pp = plg(pts)
success_flag = True
for poly_idx, polygon in enumerate(polygons):
ppi = plg(polygon.reshape(-1, 2))
ppiou = poly_intersection(ppi, pp)
if np.abs(ppiou - float(ppi.area)) > self.epsilon and \
np.abs(ppiou) > self.epsilon:
success_flag = False
break
kept_idxs.append(poly_idx)
if np.abs(ppiou - float(ppi.area)) < self.epsilon:
polys_new.append(polygon)
else:
polys_keep.append(polygon)
if success_flag:
break
cropped = image[ymin:ymax, xmin:xmax, :]
select_type = self._random_flip_type()
if select_type == 0:
img = np.ascontiguousarray(cropped[:, ::-1])
elif select_type == 1:
img = np.ascontiguousarray(cropped[::-1, :])
else:
img = np.ascontiguousarray(cropped[::-1, ::-1])
image[ymin:ymax, xmin:xmax, :] = img
results['img'] = image
if len(polys_new) != 0:
height, width, _ = cropped.shape
if select_type == 0:
for idx, polygon in enumerate(polys_new):
poly = polygon.reshape(-1, 2)
poly[:, 0] = width - poly[:, 0] + 2 * xmin
polys_new[idx] = poly.reshape(-1, )
elif select_type == 1:
for idx, polygon in enumerate(polys_new):
poly = polygon.reshape(-1, 2)
poly[:, 1] = height - poly[:, 1] + 2 * ymin
polys_new[idx] = poly.reshape(-1, )
else:
for idx, polygon in enumerate(polys_new):
poly = polygon.reshape(-1, 2)
poly[:, 0] = width - poly[:, 0] + 2 * xmin
poly[:, 1] = height - poly[:, 1] + 2 * ymin
polys_new[idx] = poly.reshape(-1, )
polygons = polys_keep + polys_new
# ignored = polys_keep_ignore_idx + polys_new_ignore_idx
results['gt_polygons'] = polygons
results['gt_ignored'] = results['gt_ignored'][kept_idxs]
results['gt_bboxes_labels'] = results['gt_bboxes_labels'][
kept_idxs]
return results
def _generate_crop_target(self, image: np.ndarray,
all_polys: List[np.ndarray], pad_h: int,
pad_w: int) -> Tuple[np.ndarray, np.ndarray]:
"""Generate cropping target and make sure not to crop the polygon
instances.
Args:
image (np.ndarray): The image waited to be crop.
all_polys (list[np.ndarray]): Ground-truth polygons.
pad_h (int): Padding length of height.
pad_w (int): Padding length of width.
Returns:
(np.ndarray, np.ndarray): Returns a tuple ``(h_axis, w_axis)``,
where ``h_axis`` is the vertical cropping range and ``w_axis``
is the horizontal cropping range.
"""
h, w, _ = image.shape
h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
text_polys = []
for polygon in all_polys:
rect = cv2.minAreaRect(polygon.astype(np.int32).reshape(-1, 2))
box = cv2.boxPoints(rect)
box = np.int0(box)
text_polys.append([box[0], box[1], box[2], box[3]])
polys = np.array(text_polys, dtype=np.int32)
for poly in polys:
poly = np.round(poly, decimals=0).astype(np.int32)
minx, maxx = np.min(poly[:, 0]), np.max(poly[:, 0])
miny, maxy = np.min(poly[:, 1]), np.max(poly[:, 1])
w_array[minx + pad_w:maxx + pad_w] = 1
h_array[miny + pad_h:maxy + pad_h] = 1
h_axis = np.where(h_array == 0)[0]
w_axis = np.where(w_array == 0)[0]
return h_axis, w_axis
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(pad_ratio = {self.pad_ratio}'
repr_str += f', crop_ratio = {self.crop_ratio}'
repr_str += f', iter_num = {self.iter_num}'
repr_str += f', min_area_ratio = {self.min_area_ratio}'
repr_str += f', epsilon = {self.epsilon})'
return repr_str
@TRANSFORMS.register_module()
@avoid_cache_randomness
class TextDetRandomCrop(BaseTransform):
"""Randomly select a region and crop images to a target size and make sure
to contain text region. This transform may break up text instances, and for
broken text instances, we will crop it's bbox and polygon coordinates. This
transform is recommend to be used in segmentation-based network.
Required Keys:
- img
- gt_polygons
- gt_bboxes
- gt_bboxes_labels
- gt_ignored
Modified Keys:
- img
- img_shape
- gt_polygons
- gt_bboxes
- gt_bboxes_labels
- gt_ignored
Args:
target_size (tuple(int, int) or int): Target size for the cropped
image. If it's a tuple, then target width and target height will be
``target_size[0]`` and ``target_size[1]``, respectively. If it's an
integer, them both target width and target height will be
``target_size``.
positive_sample_ratio (float): The probability of sampling regions
that go through text regions. Defaults to 5. / 8.
"""
def __init__(self,
target_size: Tuple[int, int] or int,
positive_sample_ratio: float = 5.0 / 8.0) -> None:
self.target_size = target_size if isinstance(
target_size, tuple) else (target_size, target_size)
self.positive_sample_ratio = positive_sample_ratio
def _get_postive_prob(self) -> float:
"""Get the probability to do positive sample.
Returns:
float: The probability to do positive sample.
"""
return np.random.random_sample()
def _sample_num(self, start, end):
"""Sample a number in range [start, end].
Args:
start (int): Starting point.
end (int): Ending point.
Returns:
(int): Sampled number.
"""
return random.randint(start, end)
def _sample_offset(self, gt_polygons: Sequence[np.ndarray],
img_size: Tuple[int, int]) -> Tuple[int, int]:
"""Samples the top-left coordinate of a crop region, ensuring that the
cropped region contains at least one polygon.
Args:
gt_polygons (list(ndarray)) : Polygons.
img_size (tuple(int, int)) : Image size in the format of
(height, width).
Returns:
tuple(int, int): Top-left coordinate of the cropped region.
"""
h, w = img_size
t_w, t_h = self.target_size
# target size is bigger than origin size
t_h = t_h if t_h < h else h
t_w = t_w if t_w < w else w
if (gt_polygons is not None and len(gt_polygons) > 0
and self._get_postive_prob() < self.positive_sample_ratio):
# make sure to crop the positive region
# the minimum top left to crop positive region (h,w)
tl = np.array([h + 1, w + 1], dtype=np.int32)
for gt_polygon in gt_polygons:
temp_point = np.min(gt_polygon.reshape(2, -1), axis=1)
if temp_point[0] <= tl[0]:
tl[0] = temp_point[0]
if temp_point[1] <= tl[1]:
tl[1] = temp_point[1]
tl = tl - (t_h, t_w)
tl[tl < 0] = 0
# the maximum bottum right to crop positive region
br = np.array([0, 0], dtype=np.int32)
for gt_polygon in gt_polygons:
temp_point = np.max(gt_polygon.reshape(2, -1), axis=1)
if temp_point[0] > br[0]:
br[0] = temp_point[0]
if temp_point[1] > br[1]:
br[1] = temp_point[1]
br = br - (t_h, t_w)
br[br < 0] = 0
# if br is too big so that crop the outside region of img
br[0] = min(br[0], h - t_h)
br[1] = min(br[1], w - t_w)
#
h = self._sample_num(tl[0], br[0]) if tl[0] < br[0] else 0
w = self._sample_num(tl[1], br[1]) if tl[1] < br[1] else 0
else:
# make sure not to crop outside of img
h = self._sample_num(0, h - t_h) if h - t_h > 0 else 0
w = self._sample_num(0, w - t_w) if w - t_w > 0 else 0
return (h, w)
def _crop_img(self, img: np.ndarray, offset: Tuple[int, int],
target_size: Tuple[int, int]) -> np.ndarray:
"""Crop the image given an offset and a target size.
Args:
img (ndarray): Image.
offset (Tuple[int. int]): Coordinates of the starting point.
target_size: Target image size.
"""
h, w = img.shape[:2]
target_size = target_size[::-1]
br = np.min(
np.stack((np.array(offset) + np.array(target_size), np.array(
(h, w)))),
axis=0)
return img[offset[0]:br[0], offset[1]:br[1]], np.array(
[offset[1], offset[0], br[1], br[0]])
def _crop_polygons(self, polygons: Sequence[np.ndarray],
crop_bbox: np.ndarray) -> Sequence[np.ndarray]:
"""Crop polygons to be within a crop region. If polygon crosses the
crop_bbox, we will keep the part left in crop_bbox by cropping its
boardline.
Args:
polygons (list(ndarray)): List of polygons [(N1, ), (N2, ), ...].
crop_bbox (ndarray): Cropping region. [x1, y1, x2, y1].
Returns
tuple(List(ArrayLike), list[int]):
- (List(ArrayLike)): The rest of the polygons located in the
crop region.
- (list[int]): Index list of the reserved polygons.
"""
polygons_cropped = []
kept_idx = []
for idx, polygon in enumerate(polygons):
if polygon.size < 6:
continue
poly = crop_polygon(polygon, crop_bbox)
if poly is not None:
poly = poly.reshape(-1, 2) - (crop_bbox[0], crop_bbox[1])
polygons_cropped.append(poly.reshape(-1))
kept_idx.append(idx)
return (polygons_cropped, kept_idx)
def transform(self, results: Dict) -> Dict:
"""Applying random crop on results.
Args:
results (dict): Result dict contains the data to transform.
Returns:
dict: The transformed data
"""
if self.target_size == results['img'].shape[:2][::-1]:
return results
gt_polygons = results['gt_polygons']
crop_offset = self._sample_offset(gt_polygons,
results['img'].shape[:2])
img, crop_bbox = self._crop_img(results['img'], crop_offset,
self.target_size)
results['img'] = img
results['img_shape'] = img.shape[:2]
gt_polygons, polygon_kept_idx = self._crop_polygons(
gt_polygons, crop_bbox)
bboxes = [poly2bbox(poly) for poly in gt_polygons]
results['gt_bboxes'] = np.array(
bboxes, dtype=np.float32).reshape(-1, 4)
results['gt_polygons'] = gt_polygons
results['gt_bboxes_labels'] = results['gt_bboxes_labels'][
polygon_kept_idx]
results['gt_ignored'] = results['gt_ignored'][polygon_kept_idx]
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(target_size = {self.target_size}, '
repr_str += f'positive_sample_ratio = {self.positive_sample_ratio})'
return repr_str
|