File size: 6,706 Bytes
9bf4bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, Optional, Sequence, Union

import torch
from mmengine.evaluator import BaseMetric

from mmocr.registry import METRICS


@METRICS.register_module()
class F1Metric(BaseMetric):
    """Compute F1 scores.

    Args:
        num_classes (int): Number of labels.
        key (str): The key name of the predicted and ground truth labels.
            Defaults to 'labels'.
        mode (str or list[str]): Options are:
            - 'micro': Calculate metrics globally by counting the total true
              positives, false negatives and false positives.
            - 'macro': Calculate metrics for each label, and find their
              unweighted mean.
            If mode is a list, then metrics in mode will be calculated
            separately. Defaults to 'micro'.
        cared_classes (list[int]): The indices of the labels particpated in
            the metirc computing. If both ``cared_classes`` and
            ``ignored_classes`` are empty, all classes will be taken into
            account. Defaults to []. Note: ``cared_classes`` and
            ``ignored_classes`` cannot be specified together.
        ignored_classes (list[int]): The index set of labels that are ignored
            when computing metrics. If both ``cared_classes`` and
            ``ignored_classes`` are empty, all classes will be taken into
            account. Defaults to []. Note: ``cared_classes`` and
            ``ignored_classes`` cannot be specified together.
        collect_device (str): Device name used for collecting results from
            different ranks during distributed training. Must be 'cpu' or
            'gpu'. Defaults to 'cpu'.
        prefix (str, optional): The prefix that will be added in the metric
            names to disambiguate homonymous metrics of different evaluators.
            If prefix is not provided in the argument, self.default_prefix
            will be used instead. Defaults to None.

    Warning:
        Only non-negative integer labels are involved in computing. All
        negative ground truth labels will be ignored.
    """

    default_prefix: Optional[str] = 'kie'

    def __init__(self,
                 num_classes: int,
                 key: str = 'labels',
                 mode: Union[str, Sequence[str]] = 'micro',
                 cared_classes: Sequence[int] = [],
                 ignored_classes: Sequence[int] = [],
                 collect_device: str = 'cpu',
                 prefix: Optional[str] = None) -> None:
        super().__init__(collect_device, prefix)
        assert isinstance(num_classes, int)
        assert isinstance(cared_classes, (list, tuple))
        assert isinstance(ignored_classes, (list, tuple))
        assert isinstance(mode, (list, str))
        assert not (len(cared_classes) > 0 and len(ignored_classes) > 0), \
            'cared_classes and ignored_classes cannot be both non-empty'

        if isinstance(mode, str):
            mode = [mode]
        assert set(mode).issubset({'micro', 'macro'})
        self.mode = mode

        if len(cared_classes) > 0:
            assert min(cared_classes) >= 0 and \
                max(cared_classes) < num_classes, \
                'cared_classes must be a subset of [0, num_classes)'
            self.cared_labels = sorted(cared_classes)
        elif len(ignored_classes) > 0:
            assert min(ignored_classes) >= 0 and \
                max(ignored_classes) < num_classes, \
                'ignored_classes must be a subset of [0, num_classes)'
            self.cared_labels = sorted(
                set(range(num_classes)) - set(ignored_classes))
        else:
            self.cared_labels = list(range(num_classes))
        self.num_classes = num_classes
        self.key = key

    def process(self, data_batch: Sequence[Dict],
                data_samples: Sequence[Dict]) -> None:
        """Process one batch of data_samples. The processed results should be
        stored in ``self.results``, which will be used to compute the metrics
        when all batches have been processed.

        Args:
            data_batch (Sequence[Dict]): A batch of gts.
            data_samples (Sequence[Dict]): A batch of outputs from the model.
        """
        for data_sample in data_samples:
            pred_labels = data_sample.get('pred_instances').get(self.key).cpu()
            gt_labels = data_sample.get('gt_instances').get(self.key).cpu()

            result = dict(
                pred_labels=pred_labels.flatten(),
                gt_labels=gt_labels.flatten())
            self.results.append(result)

    def compute_metrics(self, results: Sequence[Dict]) -> Dict:
        """Compute the metrics from processed results.

        Args:
            results (list[Dict]): The processed results of each batch.

        Returns:
            dict[str, float]: The f1 scores. The keys are the names of the
                metrics, and the values are corresponding results. Possible
                keys are 'micro_f1' and 'macro_f1'.
        """

        preds = []
        gts = []
        for result in results:
            preds.append(result['pred_labels'])
            gts.append(result['gt_labels'])
        preds = torch.cat(preds)
        gts = torch.cat(gts)

        assert preds.max() < self.num_classes
        assert gts.max() < self.num_classes

        cared_labels = preds.new_tensor(self.cared_labels, dtype=torch.long)

        hits = (preds == gts)[None, :]
        preds_per_label = cared_labels[:, None] == preds[None, :]
        gts_per_label = cared_labels[:, None] == gts[None, :]

        tp = (hits * preds_per_label).float()
        fp = (~hits * preds_per_label).float()
        fn = (~hits * gts_per_label).float()

        result = {}
        if 'macro' in self.mode:
            result['macro_f1'] = self._compute_f1(
                tp.sum(-1), fp.sum(-1), fn.sum(-1))
        if 'micro' in self.mode:
            result['micro_f1'] = self._compute_f1(tp.sum(), fp.sum(), fn.sum())

        return result

    def _compute_f1(self, tp: torch.Tensor, fp: torch.Tensor,
                    fn: torch.Tensor) -> float:
        """Compute the F1-score based on the true positives, false positives
        and false negatives.

        Args:
            tp (Tensor): The true positives.
            fp (Tensor): The false positives.
            fn (Tensor): The false negatives.

        Returns:
            float: The F1-score.
        """
        precision = tp / (tp + fp).clamp(min=1e-8)
        recall = tp / (tp + fn).clamp(min=1e-8)
        f1 = 2 * precision * recall / (precision + recall).clamp(min=1e-8)
        return float(f1.mean())