Spaces:
Sleeping
Sleeping
File size: 5,606 Bytes
9bf4bd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import json
import os
import os.path as osp
import cv2
import lmdb
import numpy as np
from mmocr.utils import list_from_file
def parse_line(line, format):
if format == 'txt':
img_name, text = line.split(' ')
else:
line = json.loads(line)
img_name = line['filename']
text = line['text']
return img_name, text
def check_image_is_valid(imageBin):
if imageBin is None:
return False
imageBuf = np.frombuffer(imageBin, dtype=np.uint8)
img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE)
imgH, imgW = img.shape[0], img.shape[1]
if imgH * imgW == 0:
return False
return True
def write_cache(env, cache):
with env.begin(write=True) as txn:
cursor = txn.cursor()
cursor.putmulti(cache, dupdata=False, overwrite=True)
def recog2lmdb(img_root,
label_path,
output,
label_format='txt',
label_only=False,
batch_size=1000,
encoding='utf-8',
lmdb_map_size=1099511627776,
verify=True):
"""Create text recognition dataset to LMDB format.
Args:
img_root (str): Path to images.
label_path (str): Path to label file.
output (str): LMDB output path.
label_format (str): Format of the label file, either txt or jsonl.
label_only (bool): Only convert label to lmdb format.
batch_size (int): Number of files written to the cache each time.
encoding (str): Label encoding method.
lmdb_map_size (int): Maximum size database may grow to.
verify (bool): If true, check the validity of
every image.Defaults to True.
E.g.
This function supports MMOCR's recognition data format and the label file
can be txt or jsonl, as follows:
βββimg_root
| |ββ img1.jpg
| |ββ img2.jpg
| |ββ ...
|ββlabel.txt (or label.jsonl)
label.txt: img1.jpg HELLO
img2.jpg WORLD
...
label.jsonl: {'filename':'img1.jpg', 'text':'HELLO'}
{'filename':'img2.jpg', 'text':'WORLD'}
...
"""
# check label format
assert osp.basename(label_path).split('.')[-1] == label_format
# create lmdb env
os.makedirs(output, exist_ok=True)
env = lmdb.open(output, map_size=lmdb_map_size)
# load label file
anno_list = list_from_file(label_path, encoding=encoding)
cache = []
# index start from 1
cnt = 1
n_samples = len(anno_list)
for anno in anno_list:
label_key = 'label-%09d'.encode(encoding) % cnt
img_name, text = parse_line(anno, label_format)
if label_only:
# convert only labels to lmdb
line = json.dumps(
dict(filename=img_name, text=text), ensure_ascii=False)
cache.append((label_key, line.encode(encoding)))
else:
# convert both images and labels to lmdb
img_path = osp.join(img_root, img_name)
if not osp.exists(img_path):
print('%s does not exist' % img_path)
continue
with open(img_path, 'rb') as f:
image_bin = f.read()
if verify:
try:
if not check_image_is_valid(image_bin):
print('%s is not a valid image' % img_path)
continue
except Exception:
print('error occurred at ', img_name)
image_key = 'image-%09d'.encode(encoding) % cnt
cache.append((image_key, image_bin))
cache.append((label_key, text.encode(encoding)))
if cnt % batch_size == 0:
write_cache(env, cache)
cache = []
print('Written %d / %d' % (cnt, n_samples))
cnt += 1
n_samples = cnt - 1
cache.append(
('num-samples'.encode(encoding), str(n_samples).encode(encoding)))
write_cache(env, cache)
print('Created lmdb dataset with %d samples' % n_samples)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('label_path', type=str, help='Path to label file')
parser.add_argument('output', type=str, help='Output lmdb path')
parser.add_argument(
'--img-root', '-i', type=str, help='Input imglist path')
parser.add_argument(
'--label-only',
action='store_true',
help='Only converter label to lmdb')
parser.add_argument(
'--label-format',
'-f',
default='txt',
choices=['txt', 'jsonl'],
help='The format of the label file, either txt or jsonl')
parser.add_argument(
'--batch-size',
'-b',
type=int,
default=1000,
help='Processing batch size, defaults to 1000')
parser.add_argument(
'--encoding',
'-e',
type=str,
default='utf8',
help='Bytes coding scheme, defaults to utf8')
parser.add_argument(
'--lmdb-map-size',
'-m',
type=int,
default=1099511627776,
help='Maximum size database may grow to, '
'defaults to 1099511627776 bytes (1TB)')
opt = parser.parse_args()
assert opt.img_root or opt.label_only
recog2lmdb(opt.img_root, opt.label_path, opt.output, opt.label_format,
opt.label_only, opt.batch_size, opt.encoding, opt.lmdb_map_size)
if __name__ == '__main__':
main()
|