File size: 7,955 Bytes
9bf4bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import math
import os
import os.path as osp

import cv2
import mmcv
import mmengine
from PIL import Image

from mmocr.utils import crop_img, dump_ocr_data


def collect_files(img_dir, gt_dir, ratio):
    """Collect all images and their corresponding groundtruth files.
    Args:
        img_dir (str): The image directory
        gt_dir (str): The groundtruth directory
        ratio (float): Split ratio for val set

    Returns:
        files (list): The list of tuples (img_file, groundtruth_file)
    """
    assert isinstance(img_dir, str)
    assert img_dir
    assert isinstance(gt_dir, str)
    assert gt_dir
    assert isinstance(ratio, float)
    assert ratio < 1.0, 'val_ratio should be a float between 0.0 to 1.0'

    ann_list, imgs_list = [], []
    for ann_file in os.listdir(gt_dir):
        img_file = osp.join(img_dir, ann_file.replace('txt', 'jpg'))
        # This dataset contains some images obtained from .gif,
        # which cannot be loaded by mmcv.imread(), convert them
        # to RGB mode.
        try:
            if mmcv.imread(img_file) is None:
                print(f'Convert {img_file} to RGB mode.')
                img = Image.open(img_file)
                img = img.convert('RGB')
                img.save(img_file)
        except cv2.error:
            print(f'Skip broken img {img_file}')
            continue

        ann_list.append(osp.join(gt_dir, ann_file))
        imgs_list.append(img_file)

    all_files = list(zip(imgs_list, ann_list))
    assert len(all_files), f'No images found in {img_dir}'
    print(f'Loaded {len(all_files)} images from {img_dir}')

    trn_files, val_files = [], []
    if ratio > 0:
        for i, file in enumerate(all_files):
            if i % math.floor(1 / ratio):
                trn_files.append(file)
            else:
                val_files.append(file)
    else:
        trn_files, val_files = all_files, []

    print(f'training #{len(trn_files)}, val #{len(val_files)}')

    return trn_files, val_files


def collect_annotations(files, nproc=1):
    """Collect the annotation information.
    Args:
        files (list): The list of tuples (image_file, groundtruth_file)
        nproc (int): The number of process to collect annotations

    Returns:
        images (list): The list of image information dicts
    """
    assert isinstance(files, list)
    assert isinstance(nproc, int)

    if nproc > 1:
        images = mmengine.track_parallel_progress(
            load_img_info, files, nproc=nproc)
    else:
        images = mmengine.track_progress(load_img_info, files)

    return images


def load_img_info(files):
    """Load the information of one image.
    Args:
        files (tuple): The tuple of (img_file, groundtruth_file)

    Returns:
        img_info (dict): The dict of the img and annotation information
    """
    assert isinstance(files, tuple)

    img_file, gt_file = files
    assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split(
        '.')[0]
    # read imgs while ignoring orientations
    img = mmcv.imread(img_file)

    img_info = dict(
        file_name=osp.join(osp.basename(img_file)),
        height=img.shape[0],
        width=img.shape[1],
        segm_file=osp.join(osp.basename(gt_file)))

    if osp.splitext(gt_file)[1] == '.txt':
        img_info = load_txt_info(gt_file, img_info)
    else:
        raise NotImplementedError

    return img_info


def load_txt_info(gt_file, img_info):
    """Collect the annotation information.

    The annotation format is as the following:
    x1,y1,x2,y2,x3,y3,x4,y4,text

    45.45,226.83,11.87,181.79,183.84,13.1,233.79,49.95,时尚袋袋
    345.98,311.18,345.98,347.21,462.26,347.21,462.26,311.18,73774
    462.26,292.34,461.44,299.71,502.39,299.71,502.39,292.34,73/74/737

    Args:
        gt_file (str): The path to ground-truth
        img_info (dict): The dict of the img and annotation information

    Returns:
        img_info (dict): The dict of the img and annotation information
    """

    anno_info = []
    with open(gt_file) as f:
        lines = f.readlines()
    for line in lines:
        points = line.split(',')[0:8]
        word = line.split(',')[8].rstrip('\n')
        if word == '###':
            continue
        bbox = [math.floor(float(pt)) for pt in points]
        anno = dict(bbox=bbox, word=word)
        anno_info.append(anno)

    img_info.update(anno_info=anno_info)

    return img_info


def generate_ann(root_path, split, image_infos, preserve_vertical):
    """Generate cropped annotations and label txt file.

    Args:
        root_path (str): The root path of the dataset
        split (str): The split of dataset. Namely: training or test
        image_infos (list[dict]): A list of dicts of the img and
            annotation information
        preserve_vertical (bool): Whether to preserve vertical texts
    """
    print('Cropping images...')
    dst_image_root = osp.join(root_path, 'crops', split)
    ignore_image_root = osp.join(root_path, 'ignores', split)
    if split == 'training':
        dst_label_file = osp.join(root_path, 'train_label.json')
    elif split == 'val':
        dst_label_file = osp.join(root_path, 'val_label.json')
    mmengine.mkdir_or_exist(dst_image_root)
    mmengine.mkdir_or_exist(ignore_image_root)

    img_info = []
    for image_info in image_infos:
        index = 1
        src_img_path = osp.join(root_path, 'imgs', image_info['file_name'])
        image = mmcv.imread(src_img_path)
        src_img_root = image_info['file_name'].split('.')[0]

        for anno in image_info['anno_info']:
            word = anno['word']
            dst_img = crop_img(image, anno['bbox'], 0, 0)
            h, w, _ = dst_img.shape

            dst_img_name = f'{src_img_root}_{index}.png'
            index += 1
            # Skip invalid annotations
            if min(dst_img.shape) == 0:
                continue
            # Skip vertical texts
            if not preserve_vertical and h / w > 2 and split == 'training':
                dst_img_path = osp.join(ignore_image_root, dst_img_name)
                mmcv.imwrite(dst_img, dst_img_path)
                continue

            dst_img_path = osp.join(dst_image_root, dst_img_name)
            mmcv.imwrite(dst_img, dst_img_path)

            img_info.append({
                'file_name': dst_img_name,
                'anno_info': [{
                    'text': word
                }]
            })

    dump_ocr_data(img_info, dst_label_file, 'textrecog')


def parse_args():
    parser = argparse.ArgumentParser(
        description='Generate training and val set of MTWI.')
    parser.add_argument('root_path', help='Root dir path of MTWI')
    parser.add_argument(
        '--val-ratio', help='Split ratio for val set', default=0.0, type=float)
    parser.add_argument(
        '--preserve-vertical',
        help='Preserve samples containing vertical texts',
        action='store_true')
    parser.add_argument(
        '--nproc', default=1, type=int, help='Number of process')
    args = parser.parse_args()
    return args


def main():
    args = parse_args()
    root_path = args.root_path
    ratio = args.val_ratio

    trn_files, val_files = collect_files(
        osp.join(root_path, 'imgs'), osp.join(root_path, 'annotations'), ratio)

    # Train set
    trn_infos = collect_annotations(trn_files, nproc=args.nproc)
    with mmengine.Timer(
            print_tmpl='It takes {}s to convert MTWI Training annotation'):
        generate_ann(root_path, 'training', trn_infos, args.preserve_vertical)

    # Val set
    if len(val_files) > 0:
        val_infos = collect_annotations(val_files, nproc=args.nproc)
        with mmengine.Timer(
                print_tmpl='It takes {}s to convert MTWI Val annotation'):
            generate_ann(root_path, 'val', val_infos, args.preserve_vertical)


if __name__ == '__main__':
    main()