Spaces:
Running
Running
File size: 23,383 Bytes
9bf4bd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
import random
from typing import Dict, List, Optional, Tuple
import cv2
import mmcv
import numpy as np
from mmcv.transforms.base import BaseTransform
from mmcv.transforms.utils import cache_randomness
from mmocr.registry import TRANSFORMS
@TRANSFORMS.register_module()
class PyramidRescale(BaseTransform):
"""Resize the image to the base shape, downsample it with gaussian pyramid,
and rescale it back to original size.
Adapted from https://github.com/FangShancheng/ABINet.
Required Keys:
- img (ndarray)
Modified Keys:
- img (ndarray)
Args:
factor (int): The decay factor from base size, or the number of
downsampling operations from the base layer.
base_shape (tuple[int, int]): The shape (width, height) of the base
layer of the pyramid.
randomize_factor (bool): If True, the final factor would be a random
integer in [0, factor].
"""
def __init__(self,
factor: int = 4,
base_shape: Tuple[int, int] = (128, 512),
randomize_factor: bool = True) -> None:
if not isinstance(factor, int):
raise TypeError('`factor` should be an integer, '
f'but got {type(factor)} instead')
if not isinstance(base_shape, (list, tuple)):
raise TypeError('`base_shape` should be a list or tuple, '
f'but got {type(base_shape)} instead')
if not len(base_shape) == 2:
raise ValueError('`base_shape` should contain two integers')
if not isinstance(base_shape[0], int) or not isinstance(
base_shape[1], int):
raise ValueError('`base_shape` should contain two integers')
if not isinstance(randomize_factor, bool):
raise TypeError('`randomize_factor` should be a bool, '
f'but got {type(randomize_factor)} instead')
self.factor = factor
self.randomize_factor = randomize_factor
self.base_w, self.base_h = base_shape
@cache_randomness
def get_random_factor(self) -> float:
"""Get the randomized factor.
Returns:
float: The randomized factor.
"""
return np.random.randint(0, self.factor + 1)
def transform(self, results: Dict) -> Dict:
"""Applying pyramid rescale on results.
Args:
results (dict): Result dict containing the data to transform.
Returns:
Dict: The transformed data.
"""
assert 'img' in results, '`img` is not found in results'
if self.randomize_factor:
self.factor = self.get_random_factor()
if self.factor == 0:
return results
img = results['img']
src_h, src_w = img.shape[:2]
scale_img = mmcv.imresize(img, (self.base_w, self.base_h))
for _ in range(self.factor):
scale_img = cv2.pyrDown(scale_img)
scale_img = mmcv.imresize(scale_img, (src_w, src_h))
results['img'] = scale_img
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(factor = {self.factor}'
repr_str += f', randomize_factor = {self.randomize_factor}'
repr_str += f', base_w = {self.base_w}'
repr_str += f', base_h = {self.base_h})'
return repr_str
@TRANSFORMS.register_module()
class RescaleToHeight(BaseTransform):
"""Rescale the image to the height according to setting and keep the aspect
ratio unchanged if possible. However, if any of ``min_width``,
``max_width`` or ``width_divisor`` are specified, aspect ratio may still be
changed to ensure the width meets these constraints.
Required Keys:
- img
Modified Keys:
- img
- img_shape
Added Keys:
- scale
- scale_factor
- keep_ratio
Args:
height (int): Height of rescaled image.
min_width (int, optional): Minimum width of rescaled image. Defaults
to None.
max_width (int, optional): Maximum width of rescaled image. Defaults
to None.
width_divisor (int): The divisor of width size. Defaults to 1.
resize_type (str): The type of resize class to use. Defaults to
"Resize".
**resize_kwargs: Other keyword arguments for the ``resize_type``.
"""
def __init__(self,
height: int,
min_width: Optional[int] = None,
max_width: Optional[int] = None,
width_divisor: int = 1,
resize_type: str = 'Resize',
**resize_kwargs) -> None:
super().__init__()
assert isinstance(height, int)
assert isinstance(width_divisor, int)
if min_width is not None:
assert isinstance(min_width, int)
if max_width is not None:
assert isinstance(max_width, int)
self.width_divisor = width_divisor
self.height = height
self.min_width = min_width
self.max_width = max_width
self.resize_cfg = dict(type=resize_type, **resize_kwargs)
self.resize_cfg.update(dict(scale=0))
self.resize = TRANSFORMS.build(self.resize_cfg)
def transform(self, results: Dict) -> Dict:
"""Transform function to resize images, bounding boxes and polygons.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Resized results.
"""
ori_height, ori_width = results['img'].shape[:2]
new_width = math.ceil(float(self.height) / ori_height * ori_width)
if self.min_width is not None:
new_width = max(self.min_width, new_width)
if self.max_width is not None:
new_width = min(self.max_width, new_width)
if new_width % self.width_divisor != 0:
new_width = round(
new_width / self.width_divisor) * self.width_divisor
# TODO replace up code after testing precision.
# new_width = math.ceil(
# new_width / self.width_divisor) * self.width_divisor
scale = (new_width, self.height)
self.resize.scale = scale
results = self.resize(results)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(height={self.height}, '
repr_str += f'min_width={self.min_width}, '
repr_str += f'max_width={self.max_width}, '
repr_str += f'width_divisor={self.width_divisor}, '
repr_str += f'resize_cfg={self.resize_cfg})'
return repr_str
@TRANSFORMS.register_module()
class PadToWidth(BaseTransform):
"""Only pad the image's width.
Required Keys:
- img
Modified Keys:
- img
- img_shape
Added Keys:
- pad_shape
- pad_fixed_size
- pad_size_divisor
- valid_ratio
Args:
width (int): Target width of padded image. Defaults to None.
pad_cfg (dict): Config to construct the Resize transform. Refer to
``Pad`` for detail. Defaults to ``dict(type='Pad')``.
"""
def __init__(self, width: int, pad_cfg: dict = dict(type='Pad')) -> None:
super().__init__()
assert isinstance(width, int)
self.width = width
self.pad_cfg = pad_cfg
_pad_cfg = self.pad_cfg.copy()
_pad_cfg.update(dict(size=0))
self.pad = TRANSFORMS.build(_pad_cfg)
def transform(self, results: Dict) -> Dict:
"""Call function to pad images.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Updated result dict.
"""
ori_height, ori_width = results['img'].shape[:2]
valid_ratio = min(1.0, 1.0 * ori_width / self.width)
size = (self.width, ori_height)
self.pad.size = size
results = self.pad(results)
results['valid_ratio'] = valid_ratio
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(width={self.width}, '
repr_str += f'pad_cfg={self.pad_cfg})'
return repr_str
@TRANSFORMS.register_module()
class TextRecogGeneralAug(BaseTransform):
"""A general geometric augmentation tool for text images in the CVPR 2020
paper "Learn to Augment: Joint Data Augmentation and Network Optimization
for Text Recognition". It applies distortion, stretching, and perspective
transforms to an image.
This implementation is adapted from
https://github.com/RubanSeven/Text-Image-Augmentation-python/blob/master/augment.py # noqa
TODO: Split this transform into three transforms.
Required Keys:
- img
Modified Keys:
- img
- img_shape
""" # noqa
def transform(self, results: Dict) -> Dict:
"""Call function to pad images.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Updated result dict.
"""
h, w = results['img'].shape[:2]
if h >= 20 and w >= 20:
results['img'] = self.tia_distort(results['img'],
random.randint(3, 6))
results['img'] = self.tia_stretch(results['img'],
random.randint(3, 6))
h, w = results['img'].shape[:2]
if h >= 5 and w >= 5:
results['img'] = self.tia_perspective(results['img'])
results['img_shape'] = results['img'].shape[:2]
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += '()'
return repr_str
def tia_distort(self, img: np.ndarray, segment: int = 4) -> np.ndarray:
"""Image distortion.
Args:
img (np.ndarray): The image.
segment (int): The number of segments to divide the image along
the width. Defaults to 4.
"""
img_h, img_w = img.shape[:2]
cut = img_w // segment
thresh = cut // 3
src_pts = list()
dst_pts = list()
src_pts.append([0, 0])
src_pts.append([img_w, 0])
src_pts.append([img_w, img_h])
src_pts.append([0, img_h])
dst_pts.append([np.random.randint(thresh), np.random.randint(thresh)])
dst_pts.append(
[img_w - np.random.randint(thresh),
np.random.randint(thresh)])
dst_pts.append([
img_w - np.random.randint(thresh),
img_h - np.random.randint(thresh)
])
dst_pts.append(
[np.random.randint(thresh), img_h - np.random.randint(thresh)])
half_thresh = thresh * 0.5
for cut_idx in np.arange(1, segment, 1):
src_pts.append([cut * cut_idx, 0])
src_pts.append([cut * cut_idx, img_h])
dst_pts.append([
cut * cut_idx + np.random.randint(thresh) - half_thresh,
np.random.randint(thresh) - half_thresh
])
dst_pts.append([
cut * cut_idx + np.random.randint(thresh) - half_thresh,
img_h + np.random.randint(thresh) - half_thresh
])
dst = self.warp_mls(img, src_pts, dst_pts, img_w, img_h)
return dst
def tia_stretch(self, img: np.ndarray, segment: int = 4) -> np.ndarray:
"""Image stretching.
Args:
img (np.ndarray): The image.
segment (int): The number of segments to divide the image along
the width. Defaults to 4.
"""
img_h, img_w = img.shape[:2]
cut = img_w // segment
thresh = cut * 4 // 5
src_pts = list()
dst_pts = list()
src_pts.append([0, 0])
src_pts.append([img_w, 0])
src_pts.append([img_w, img_h])
src_pts.append([0, img_h])
dst_pts.append([0, 0])
dst_pts.append([img_w, 0])
dst_pts.append([img_w, img_h])
dst_pts.append([0, img_h])
half_thresh = thresh * 0.5
for cut_idx in np.arange(1, segment, 1):
move = np.random.randint(thresh) - half_thresh
src_pts.append([cut * cut_idx, 0])
src_pts.append([cut * cut_idx, img_h])
dst_pts.append([cut * cut_idx + move, 0])
dst_pts.append([cut * cut_idx + move, img_h])
dst = self.warp_mls(img, src_pts, dst_pts, img_w, img_h)
return dst
def tia_perspective(self, img: np.ndarray) -> np.ndarray:
"""Image perspective transformation.
Args:
img (np.ndarray): The image.
segment (int): The number of segments to divide the image along
the width. Defaults to 4.
"""
img_h, img_w = img.shape[:2]
thresh = img_h // 2
src_pts = list()
dst_pts = list()
src_pts.append([0, 0])
src_pts.append([img_w, 0])
src_pts.append([img_w, img_h])
src_pts.append([0, img_h])
dst_pts.append([0, np.random.randint(thresh)])
dst_pts.append([img_w, np.random.randint(thresh)])
dst_pts.append([img_w, img_h - np.random.randint(thresh)])
dst_pts.append([0, img_h - np.random.randint(thresh)])
dst = self.warp_mls(img, src_pts, dst_pts, img_w, img_h)
return dst
def warp_mls(self,
src: np.ndarray,
src_pts: List[int],
dst_pts: List[int],
dst_w: int,
dst_h: int,
trans_ratio: float = 1.) -> np.ndarray:
"""Warp the image."""
rdx, rdy = self._calc_delta(dst_w, dst_h, src_pts, dst_pts, 100)
return self._gen_img(src, rdx, rdy, dst_w, dst_h, 100, trans_ratio)
def _calc_delta(self, dst_w: int, dst_h: int, src_pts: List[int],
dst_pts: List[int],
grid_size: int) -> Tuple[np.ndarray, np.ndarray]:
"""Compute delta."""
pt_count = len(dst_pts)
rdx = np.zeros((dst_h, dst_w))
rdy = np.zeros((dst_h, dst_w))
w = np.zeros(pt_count, dtype=np.float32)
if pt_count < 2:
return
i = 0
while True:
if dst_w <= i < dst_w + grid_size - 1:
i = dst_w - 1
elif i >= dst_w:
break
j = 0
while True:
if dst_h <= j < dst_h + grid_size - 1:
j = dst_h - 1
elif j >= dst_h:
break
sw = 0
swp = np.zeros(2, dtype=np.float32)
swq = np.zeros(2, dtype=np.float32)
new_pt = np.zeros(2, dtype=np.float32)
cur_pt = np.array([i, j], dtype=np.float32)
k = 0
for k in range(pt_count):
if i == dst_pts[k][0] and j == dst_pts[k][1]:
break
w[k] = 1. / ((i - dst_pts[k][0]) * (i - dst_pts[k][0]) +
(j - dst_pts[k][1]) * (j - dst_pts[k][1]))
sw += w[k]
swp = swp + w[k] * np.array(dst_pts[k])
swq = swq + w[k] * np.array(src_pts[k])
if k == pt_count - 1:
pstar = 1 / sw * swp
qstar = 1 / sw * swq
miu_s = 0
for k in range(pt_count):
if i == dst_pts[k][0] and j == dst_pts[k][1]:
continue
pt_i = dst_pts[k] - pstar
miu_s += w[k] * np.sum(pt_i * pt_i)
cur_pt -= pstar
cur_pt_j = np.array([-cur_pt[1], cur_pt[0]])
for k in range(pt_count):
if i == dst_pts[k][0] and j == dst_pts[k][1]:
continue
pt_i = dst_pts[k] - pstar
pt_j = np.array([-pt_i[1], pt_i[0]])
tmp_pt = np.zeros(2, dtype=np.float32)
tmp_pt[0] = (
np.sum(pt_i * cur_pt) * src_pts[k][0] -
np.sum(pt_j * cur_pt) * src_pts[k][1])
tmp_pt[1] = (-np.sum(pt_i * cur_pt_j) * src_pts[k][0] +
np.sum(pt_j * cur_pt_j) * src_pts[k][1])
tmp_pt *= (w[k] / miu_s)
new_pt += tmp_pt
new_pt += qstar
else:
new_pt = src_pts[k]
rdx[j, i] = new_pt[0] - i
rdy[j, i] = new_pt[1] - j
j += grid_size
i += grid_size
return rdx, rdy
def _gen_img(self, src: np.ndarray, rdx: np.ndarray, rdy: np.ndarray,
dst_w: int, dst_h: int, grid_size: int,
trans_ratio: float) -> np.ndarray:
"""Generate the image based on delta."""
src_h, src_w = src.shape[:2]
dst = np.zeros_like(src, dtype=np.float32)
for i in np.arange(0, dst_h, grid_size):
for j in np.arange(0, dst_w, grid_size):
ni = i + grid_size
nj = j + grid_size
w = h = grid_size
if ni >= dst_h:
ni = dst_h - 1
h = ni - i + 1
if nj >= dst_w:
nj = dst_w - 1
w = nj - j + 1
di = np.reshape(np.arange(h), (-1, 1))
dj = np.reshape(np.arange(w), (1, -1))
delta_x = self._bilinear_interp(di / h, dj / w, rdx[i, j],
rdx[i, nj], rdx[ni, j],
rdx[ni, nj])
delta_y = self._bilinear_interp(di / h, dj / w, rdy[i, j],
rdy[i, nj], rdy[ni, j],
rdy[ni, nj])
nx = j + dj + delta_x * trans_ratio
ny = i + di + delta_y * trans_ratio
nx = np.clip(nx, 0, src_w - 1)
ny = np.clip(ny, 0, src_h - 1)
nxi = np.array(np.floor(nx), dtype=np.int32)
nyi = np.array(np.floor(ny), dtype=np.int32)
nxi1 = np.array(np.ceil(nx), dtype=np.int32)
nyi1 = np.array(np.ceil(ny), dtype=np.int32)
if len(src.shape) == 3:
x = np.tile(np.expand_dims(ny - nyi, axis=-1), (1, 1, 3))
y = np.tile(np.expand_dims(nx - nxi, axis=-1), (1, 1, 3))
else:
x = ny - nyi
y = nx - nxi
dst[i:i + h,
j:j + w] = self._bilinear_interp(x, y, src[nyi, nxi],
src[nyi, nxi1],
src[nyi1, nxi], src[nyi1,
nxi1])
dst = np.clip(dst, 0, 255)
dst = np.array(dst, dtype=np.uint8)
return dst
@staticmethod
def _bilinear_interp(x, y, v11, v12, v21, v22):
"""Bilinear interpolation.
TODO: Docs for args and put it into utils.
"""
return (v11 * (1 - y) + v12 * y) * (1 - x) + (v21 *
(1 - y) + v22 * y) * x
@TRANSFORMS.register_module()
class CropHeight(BaseTransform):
"""Randomly crop the image's height, either from top or bottom.
Adapted from
https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.6/ppocr/data/imaug/rec_img_aug.py # noqa
Required Keys:
- img
Modified Keys:
- img
- img_shape
Args:
crop_min (int): Minimum pixel(s) to crop. Defaults to 1.
crop_max (int): Maximum pixel(s) to crop. Defaults to 8.
"""
def __init__(
self,
min_pixels: int = 1,
max_pixels: int = 8,
) -> None:
super().__init__()
assert max_pixels >= min_pixels
self.min_pixels = min_pixels
self.max_pixels = max_pixels
@cache_randomness
def get_random_vars(self):
"""Get all the random values used in this transform."""
crop_pixels = int(random.randint(self.min_pixels, self.max_pixels))
crop_top = random.randint(0, 1)
return crop_pixels, crop_top
def transform(self, results: Dict) -> Dict:
"""Transform function to crop images.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Cropped results.
"""
h = results['img'].shape[0]
crop_pixels, crop_top = self.get_random_vars()
crop_pixels = min(crop_pixels, h - 1)
img = results['img'].copy()
if crop_top:
img = img[crop_pixels:h, :, :]
else:
img = img[0:h - crop_pixels, :, :]
results['img_shape'] = img.shape[:2]
results['img'] = img
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(min_pixels = {self.min_pixels}, '
repr_str += f'max_pixels = {self.max_pixels})'
return repr_str
@TRANSFORMS.register_module()
class ImageContentJitter(BaseTransform):
"""Jitter the image contents.
Adapted from
https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.6/ppocr/data/imaug/rec_img_aug.py # noqa
Required Keys:
- img
Modified Keys:
- img
"""
def transform(self, results: Dict, jitter_ratio: float = 0.01) -> Dict:
"""Transform function to jitter images.
Args:
results (dict): Result dict from loading pipeline.
jitter_ratio (float): Controls the strength of jittering.
Defaults to 0.01.
Returns:
dict: Jittered results.
"""
h, w = results['img'].shape[:2]
img = results['img'].copy()
if h > 10 and w > 10:
thres = min(h, w)
jitter_range = int(random.random() * thres * 0.01)
for i in range(jitter_range):
img[i:, i:, :] = img[:h - i, :w - i, :]
results['img'] = img
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += '()'
return repr_str
@TRANSFORMS.register_module()
class ReversePixels(BaseTransform):
"""Reverse image pixels.
Adapted from
https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.6/ppocr/data/imaug/rec_img_aug.py # noqa
Required Keys:
- img
Modified Keys:
- img
"""
def transform(self, results: Dict) -> Dict:
"""Transform function to reverse image pixels.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Reversed results.
"""
results['img'] = 255. - results['img'].copy()
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += '()'
return repr_str
|