File size: 9,721 Bytes
9bf4bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from typing import Callable, List, Optional, Sequence, Union

import numpy as np
from mmengine.dataset import BaseDataset
from mmengine.fileio import list_from_file

from mmocr.registry import DATASETS
from mmocr.utils.parsers import LineJsonParser
from mmocr.utils.polygon_utils import sort_vertex8


@DATASETS.register_module()
class WildReceiptDataset(BaseDataset):
    """WildReceipt Dataset for key information extraction. There are two files
    to be loaded: metainfo and annotation. The metainfo file contains the
    mapping between classes and labels. The annotation file contains the all
    necessary information about the image, such as bounding boxes, texts, and
    labels etc.

    The metainfo file is a text file with the following format:

    .. code-block:: none

        0 Ignore
        1 Store_name_value
        2 Store_name_key

    The annotation format is shown as follows.

    .. code-block:: json

        {
            "file_name": "a.jpeg",
            "height": 348,
            "width": 348,
            "annotations": [
                {
                    "box": [
                        114.0,
                        19.0,
                        230.0,
                        19.0,
                        230.0,
                        1.0,
                        114.0,
                        1.0
                    ],
                    "text": "CHOEUN",
                    "label": 1
                },
                {
                    "box": [
                        97.0,
                        35.0,
                        236.0,
                        35.0,
                        236.0,
                        19.0,
                        97.0,
                        19.0
                    ],
                    "text": "KOREANRESTAURANT",
                    "label": 2
                }
            ]
        }

    Args:
        directed (bool): Whether to use directed graph. Defaults to False.
        ann_file (str): Annotation file path. Defaults to ''.
        metainfo (str or dict, optional): Meta information for dataset, such as
            class information. If it's a string, it will be treated as a path
            to the class file from which the class information will be loaded.
            Defaults to None.
        data_root (str, optional): The root directory for ``data_prefix`` and
            ``ann_file``. Defaults to ''.
        data_prefix (dict, optional): Prefix for training data. Defaults to
            dict(img_path='').
        filter_cfg (dict, optional): Config for filter data. Defaults to None.
        indices (int or Sequence[int], optional): Support using first few
            data in annotation file to facilitate training/testing on a smaller
            dataset. Defaults to None which means using all ``data_infos``.
        serialize_data (bool, optional): Whether to hold memory using
            serialized objects, when enabled, data loader workers can use
            shared RAM from master process instead of making a copy. Defaults
            to True.
        pipeline (list, optional): Processing pipeline. Defaults to [].
        test_mode (bool, optional): ``test_mode=True`` means in test phase.
            Defaults to False.
        lazy_init (bool, optional): Whether to load annotation during
            instantiation. In some cases, such as visualization, only the meta
            information of the dataset is needed, which is not necessary to
            load annotation file. ``Basedataset`` can skip load annotations to
            save time by set ``lazy_init=False``. Defaults to False.
        max_refetch (int, optional): If ``Basedataset.prepare_data`` get a
            None img. The maximum extra number of cycles to get a valid
            image. Defaults to 1000.
    """
    METAINFO = {
        'category': [{
            'id': '0',
            'name': 'Ignore'
        }, {
            'id': '1',
            'name': 'Store_name_value'
        }, {
            'id': '2',
            'name': 'Store_name_key'
        }, {
            'id': '3',
            'name': 'Store_addr_value'
        }, {
            'id': '4',
            'name': 'Store_addr_key'
        }, {
            'id': '5',
            'name': 'Tel_value'
        }, {
            'id': '6',
            'name': 'Tel_key'
        }, {
            'id': '7',
            'name': 'Date_value'
        }, {
            'id': '8',
            'name': 'Date_key'
        }, {
            'id': '9',
            'name': 'Time_value'
        }, {
            'id': '10',
            'name': 'Time_key'
        }, {
            'id': '11',
            'name': 'Prod_item_value'
        }, {
            'id': '12',
            'name': 'Prod_item_key'
        }, {
            'id': '13',
            'name': 'Prod_quantity_value'
        }, {
            'id': '14',
            'name': 'Prod_quantity_key'
        }, {
            'id': '15',
            'name': 'Prod_price_value'
        }, {
            'id': '16',
            'name': 'Prod_price_key'
        }, {
            'id': '17',
            'name': 'Subtotal_value'
        }, {
            'id': '18',
            'name': 'Subtotal_key'
        }, {
            'id': '19',
            'name': 'Tax_value'
        }, {
            'id': '20',
            'name': 'Tax_key'
        }, {
            'id': '21',
            'name': 'Tips_value'
        }, {
            'id': '22',
            'name': 'Tips_key'
        }, {
            'id': '23',
            'name': 'Total_value'
        }, {
            'id': '24',
            'name': 'Total_key'
        }, {
            'id': '25',
            'name': 'Others'
        }]
    }

    def __init__(self,
                 directed: bool = False,
                 ann_file: str = '',
                 metainfo: Optional[Union[dict, str]] = None,
                 data_root: str = '',
                 data_prefix: dict = dict(img_path=''),
                 filter_cfg: Optional[dict] = None,
                 indices: Optional[Union[int, Sequence[int]]] = None,
                 serialize_data: bool = True,
                 pipeline: List[Union[dict, Callable]] = ...,
                 test_mode: bool = False,
                 lazy_init: bool = False,
                 max_refetch: int = 1000):
        self.directed = directed
        super().__init__(ann_file, metainfo, data_root, data_prefix,
                         filter_cfg, indices, serialize_data, pipeline,
                         test_mode, lazy_init, max_refetch)
        self._metainfo['dataset_type'] = 'WildReceiptDataset'
        self._metainfo['task_name'] = 'KIE'

    @classmethod
    def _load_metainfo(cls, metainfo: Union[str, dict] = None) -> dict:
        """Collect meta information from path to the class list or the
        dictionary of meta.

        Args:
            metainfo (str or dict): Path to the class list, or a meta
            information dict. If ``metainfo`` contains existed filename, it
            will be parsed by ``list_from_file``.

        Returns:
            dict: Parsed meta information.
        """
        cls_metainfo = copy.deepcopy(cls.METAINFO)
        if isinstance(metainfo, str):
            cls_metainfo['category'] = []
            for line in list_from_file(metainfo):
                k, v = line.split()
                cls_metainfo['category'].append({'id': k, 'name': v})
            return cls_metainfo
        else:
            return super()._load_metainfo(metainfo)

    def load_data_list(self) -> List[dict]:
        """Load data list from annotation file.

        Returns:
            List[dict]: A list of annotation dict.
        """
        parser = LineJsonParser(
            keys=['file_name', 'height', 'width', 'annotations'])
        data_list = []
        for line in list_from_file(self.ann_file):
            data_info = parser(line)
            data_info = self.parse_data_info(data_info)
            data_list.append(data_info)
        return data_list

    def parse_data_info(self, raw_data_info: dict) -> dict:
        """Parse data info from raw data info.

        Args:
            raw_data_info (dict): Raw data info.

        Returns:
            dict: Parsed data info.

            - img_path (str): Path to the image.
            - img_shape (tuple(int, int)): Image shape in (H, W).
            - instances (list[dict]): A list of instances.
              - bbox (ndarray(dtype=np.float32)): Shape (4, ). Bounding box.
              - text (str): Annotation text.
              - edge_label (int): Edge label.
              - bbox_label (int): Bounding box label.
        """

        raw_data_info['img_path'] = raw_data_info['file_name']
        data_info = super().parse_data_info(raw_data_info)
        annotations = data_info['annotations']

        assert 'box' in annotations[0]
        assert 'text' in annotations[0]

        instances = []

        for ann in annotations:
            instance = {}
            bbox = np.array(sort_vertex8(ann['box']), dtype=np.int32)
            bbox = np.array([
                bbox[0::2].min(), bbox[1::2].min(), bbox[0::2].max(),
                bbox[1::2].max()
            ],
                            dtype=np.int32)

            instance['bbox'] = bbox
            instance['text'] = ann['text']
            instance['bbox_label'] = ann.get('label', 0)
            instance['edge_label'] = ann.get('edge', 0)
            instances.append(instance)

        return dict(
            instances=instances,
            img_path=data_info['img_path'],
            img_shape=(data_info['height'], data_info['width']))