Spaces:
Running
Running
File size: 9,721 Bytes
9bf4bd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from typing import Callable, List, Optional, Sequence, Union
import numpy as np
from mmengine.dataset import BaseDataset
from mmengine.fileio import list_from_file
from mmocr.registry import DATASETS
from mmocr.utils.parsers import LineJsonParser
from mmocr.utils.polygon_utils import sort_vertex8
@DATASETS.register_module()
class WildReceiptDataset(BaseDataset):
"""WildReceipt Dataset for key information extraction. There are two files
to be loaded: metainfo and annotation. The metainfo file contains the
mapping between classes and labels. The annotation file contains the all
necessary information about the image, such as bounding boxes, texts, and
labels etc.
The metainfo file is a text file with the following format:
.. code-block:: none
0 Ignore
1 Store_name_value
2 Store_name_key
The annotation format is shown as follows.
.. code-block:: json
{
"file_name": "a.jpeg",
"height": 348,
"width": 348,
"annotations": [
{
"box": [
114.0,
19.0,
230.0,
19.0,
230.0,
1.0,
114.0,
1.0
],
"text": "CHOEUN",
"label": 1
},
{
"box": [
97.0,
35.0,
236.0,
35.0,
236.0,
19.0,
97.0,
19.0
],
"text": "KOREANRESTAURANT",
"label": 2
}
]
}
Args:
directed (bool): Whether to use directed graph. Defaults to False.
ann_file (str): Annotation file path. Defaults to ''.
metainfo (str or dict, optional): Meta information for dataset, such as
class information. If it's a string, it will be treated as a path
to the class file from which the class information will be loaded.
Defaults to None.
data_root (str, optional): The root directory for ``data_prefix`` and
``ann_file``. Defaults to ''.
data_prefix (dict, optional): Prefix for training data. Defaults to
dict(img_path='').
filter_cfg (dict, optional): Config for filter data. Defaults to None.
indices (int or Sequence[int], optional): Support using first few
data in annotation file to facilitate training/testing on a smaller
dataset. Defaults to None which means using all ``data_infos``.
serialize_data (bool, optional): Whether to hold memory using
serialized objects, when enabled, data loader workers can use
shared RAM from master process instead of making a copy. Defaults
to True.
pipeline (list, optional): Processing pipeline. Defaults to [].
test_mode (bool, optional): ``test_mode=True`` means in test phase.
Defaults to False.
lazy_init (bool, optional): Whether to load annotation during
instantiation. In some cases, such as visualization, only the meta
information of the dataset is needed, which is not necessary to
load annotation file. ``Basedataset`` can skip load annotations to
save time by set ``lazy_init=False``. Defaults to False.
max_refetch (int, optional): If ``Basedataset.prepare_data`` get a
None img. The maximum extra number of cycles to get a valid
image. Defaults to 1000.
"""
METAINFO = {
'category': [{
'id': '0',
'name': 'Ignore'
}, {
'id': '1',
'name': 'Store_name_value'
}, {
'id': '2',
'name': 'Store_name_key'
}, {
'id': '3',
'name': 'Store_addr_value'
}, {
'id': '4',
'name': 'Store_addr_key'
}, {
'id': '5',
'name': 'Tel_value'
}, {
'id': '6',
'name': 'Tel_key'
}, {
'id': '7',
'name': 'Date_value'
}, {
'id': '8',
'name': 'Date_key'
}, {
'id': '9',
'name': 'Time_value'
}, {
'id': '10',
'name': 'Time_key'
}, {
'id': '11',
'name': 'Prod_item_value'
}, {
'id': '12',
'name': 'Prod_item_key'
}, {
'id': '13',
'name': 'Prod_quantity_value'
}, {
'id': '14',
'name': 'Prod_quantity_key'
}, {
'id': '15',
'name': 'Prod_price_value'
}, {
'id': '16',
'name': 'Prod_price_key'
}, {
'id': '17',
'name': 'Subtotal_value'
}, {
'id': '18',
'name': 'Subtotal_key'
}, {
'id': '19',
'name': 'Tax_value'
}, {
'id': '20',
'name': 'Tax_key'
}, {
'id': '21',
'name': 'Tips_value'
}, {
'id': '22',
'name': 'Tips_key'
}, {
'id': '23',
'name': 'Total_value'
}, {
'id': '24',
'name': 'Total_key'
}, {
'id': '25',
'name': 'Others'
}]
}
def __init__(self,
directed: bool = False,
ann_file: str = '',
metainfo: Optional[Union[dict, str]] = None,
data_root: str = '',
data_prefix: dict = dict(img_path=''),
filter_cfg: Optional[dict] = None,
indices: Optional[Union[int, Sequence[int]]] = None,
serialize_data: bool = True,
pipeline: List[Union[dict, Callable]] = ...,
test_mode: bool = False,
lazy_init: bool = False,
max_refetch: int = 1000):
self.directed = directed
super().__init__(ann_file, metainfo, data_root, data_prefix,
filter_cfg, indices, serialize_data, pipeline,
test_mode, lazy_init, max_refetch)
self._metainfo['dataset_type'] = 'WildReceiptDataset'
self._metainfo['task_name'] = 'KIE'
@classmethod
def _load_metainfo(cls, metainfo: Union[str, dict] = None) -> dict:
"""Collect meta information from path to the class list or the
dictionary of meta.
Args:
metainfo (str or dict): Path to the class list, or a meta
information dict. If ``metainfo`` contains existed filename, it
will be parsed by ``list_from_file``.
Returns:
dict: Parsed meta information.
"""
cls_metainfo = copy.deepcopy(cls.METAINFO)
if isinstance(metainfo, str):
cls_metainfo['category'] = []
for line in list_from_file(metainfo):
k, v = line.split()
cls_metainfo['category'].append({'id': k, 'name': v})
return cls_metainfo
else:
return super()._load_metainfo(metainfo)
def load_data_list(self) -> List[dict]:
"""Load data list from annotation file.
Returns:
List[dict]: A list of annotation dict.
"""
parser = LineJsonParser(
keys=['file_name', 'height', 'width', 'annotations'])
data_list = []
for line in list_from_file(self.ann_file):
data_info = parser(line)
data_info = self.parse_data_info(data_info)
data_list.append(data_info)
return data_list
def parse_data_info(self, raw_data_info: dict) -> dict:
"""Parse data info from raw data info.
Args:
raw_data_info (dict): Raw data info.
Returns:
dict: Parsed data info.
- img_path (str): Path to the image.
- img_shape (tuple(int, int)): Image shape in (H, W).
- instances (list[dict]): A list of instances.
- bbox (ndarray(dtype=np.float32)): Shape (4, ). Bounding box.
- text (str): Annotation text.
- edge_label (int): Edge label.
- bbox_label (int): Bounding box label.
"""
raw_data_info['img_path'] = raw_data_info['file_name']
data_info = super().parse_data_info(raw_data_info)
annotations = data_info['annotations']
assert 'box' in annotations[0]
assert 'text' in annotations[0]
instances = []
for ann in annotations:
instance = {}
bbox = np.array(sort_vertex8(ann['box']), dtype=np.int32)
bbox = np.array([
bbox[0::2].min(), bbox[1::2].min(), bbox[0::2].max(),
bbox[1::2].max()
],
dtype=np.int32)
instance['bbox'] = bbox
instance['text'] = ann['text']
instance['bbox_label'] = ann.get('label', 0)
instance['edge_label'] = ann.get('edge', 0)
instances.append(instance)
return dict(
instances=instances,
img_path=data_info['img_path'],
img_shape=(data_info['height'], data_info['width']))
|