File size: 1,450 Bytes
9bf4bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# Copyright (c) OpenMMLab. All rights reserved.
from abc import ABCMeta, abstractmethod
from typing import Dict, Sequence, Tuple, Union

import torch
from torch import nn

from mmocr.registry import MODELS
from mmocr.utils.typing_utils import DetSampleList

INPUT_TYPES = Union[torch.Tensor, Sequence[torch.Tensor], Dict]


@MODELS.register_module()
class BaseTextDetModuleLoss(nn.Module, metaclass=ABCMeta):
    r"""Base class for text detection module loss.
    """

    def __init__(self) -> None:
        super().__init__()

    @abstractmethod
    def forward(self,
                inputs: INPUT_TYPES,
                data_samples: DetSampleList = None) -> Dict:
        """Calculates losses from a batch of inputs and data samples. Returns a
        dict of losses.

        Args:
            inputs (Tensor or list[Tensor] or dict): The raw tensor outputs
                from the model.
            data_samples (list(TextDetDataSample)): Datasamples containing
                ground truth data.

        Returns:
            dict: A dict of losses.
        """
        pass

    @abstractmethod
    def get_targets(self, data_samples: DetSampleList) -> Tuple:
        """Generates loss targets from data samples. Returns a tuple of target
        tensors.

        Args:
            data_samples (list(TextDetDataSample)): Ground truth data samples.

        Returns:
            tuple: A tuple of target tensors.
        """
        pass