Spaces:
Running
Running
File size: 23,399 Bytes
9bf4bd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Sequence, Tuple, Union
import cv2
import numpy as np
import torch
from mmdet.models.utils import multi_apply
from numpy.fft import fft
from numpy.linalg import norm
from mmocr.registry import MODELS
from mmocr.structures import TextDetDataSample
from mmocr.utils.typing_utils import ArrayLike
from .textsnake_module_loss import TextSnakeModuleLoss
@MODELS.register_module()
class FCEModuleLoss(TextSnakeModuleLoss):
"""The class for implementing FCENet loss.
FCENet(CVPR2021): `Fourier Contour Embedding for Arbitrary-shaped Text
Detection <https://arxiv.org/abs/2104.10442>`_
Args:
fourier_degree (int) : The maximum Fourier transform degree k.
num_sample (int) : The sampling points number of regression
loss. If it is too small, fcenet tends to be overfitting.
negative_ratio (float or int): Maximum ratio of negative
samples to positive ones in OHEM. Defaults to 3.
resample_step (float): The step size for resampling the text center
line (TCL). It's better not to exceed half of the minimum width.
center_region_shrink_ratio (float): The shrink ratio of text center
region.
level_size_divisors (tuple(int)): The downsample ratio on each level.
level_proportion_range (tuple(tuple(int))): The range of text sizes
assigned to each level.
loss_tr (dict) : The loss config used to calculate the text region
loss. Defaults to dict(type='MaskedBalancedBCELoss').
loss_tcl (dict) : The loss config used to calculate the text center
line loss. Defaults to dict(type='MaskedBCELoss').
loss_reg_x (dict) : The loss config used to calculate the regression
loss on x axis. Defaults to dict(type='MaskedSmoothL1Loss').
loss_reg_y (dict) : The loss config used to calculate the regression
loss on y axis. Defaults to dict(type='MaskedSmoothL1Loss').
"""
def __init__(
self,
fourier_degree: int,
num_sample: int,
negative_ratio: Union[float, int] = 3.,
resample_step: float = 4.0,
center_region_shrink_ratio: float = 0.3,
level_size_divisors: Tuple[int] = (8, 16, 32),
level_proportion_range: Tuple[Tuple[int]] = ((0, 0.4), (0.3, 0.7),
(0.6, 1.0)),
loss_tr: Dict = dict(type='MaskedBalancedBCELoss'),
loss_tcl: Dict = dict(type='MaskedBCELoss'),
loss_reg_x: Dict = dict(type='SmoothL1Loss', reduction='none'),
loss_reg_y: Dict = dict(type='SmoothL1Loss', reduction='none'),
) -> None:
super().__init__()
self.fourier_degree = fourier_degree
self.num_sample = num_sample
self.resample_step = resample_step
self.center_region_shrink_ratio = center_region_shrink_ratio
self.level_size_divisors = level_size_divisors
self.level_proportion_range = level_proportion_range
loss_tr.update(negative_ratio=negative_ratio)
self.loss_tr = MODELS.build(loss_tr)
self.loss_tcl = MODELS.build(loss_tcl)
self.loss_reg_x = MODELS.build(loss_reg_x)
self.loss_reg_y = MODELS.build(loss_reg_y)
def forward(self, preds: Sequence[Dict],
data_samples: Sequence[TextDetDataSample]) -> Dict:
"""Compute FCENet loss.
Args:
preds (list[dict]): A list of dict with keys of ``cls_res``,
``reg_res`` corresponds to the classification result and
regression result computed from the input tensor with the
same index. They have the shapes of :math:`(N, C_{cls,i}, H_i,
W_i)` and :math: `(N, C_{out,i}, H_i, W_i)`.
data_samples (list[TextDetDataSample]): The data samples.
Returns:
dict: The dict for fcenet losses with loss_text, loss_center,
loss_reg_x and loss_reg_y.
"""
assert isinstance(preds, list) and len(preds) == 3
p3_maps, p4_maps, p5_maps = self.get_targets(data_samples)
device = preds[0]['cls_res'].device
# to device
gts = [p3_maps.to(device), p4_maps.to(device), p5_maps.to(device)]
losses = multi_apply(self.forward_single, preds, gts)
loss_tr = torch.tensor(0., device=device).float()
loss_tcl = torch.tensor(0., device=device).float()
loss_reg_x = torch.tensor(0., device=device).float()
loss_reg_y = torch.tensor(0., device=device).float()
for idx, loss in enumerate(losses):
if idx == 0:
loss_tr += sum(loss)
elif idx == 1:
loss_tcl += sum(loss)
elif idx == 2:
loss_reg_x += sum(loss)
else:
loss_reg_y += sum(loss)
results = dict(
loss_text=loss_tr,
loss_center=loss_tcl,
loss_reg_x=loss_reg_x,
loss_reg_y=loss_reg_y,
)
return results
def forward_single(self, pred: torch.Tensor,
gt: torch.Tensor) -> Sequence[torch.Tensor]:
"""Compute loss for one feature level.
Args:
pred (dict): A dict with keys ``cls_res`` and ``reg_res``
corresponds to the classification result and regression result
from one feature level.
gt (Tensor): Ground truth for one feature level. Cls and reg
targets are concatenated along the channel dimension.
Returns:
list[Tensor]: A list of losses for each feature level.
"""
assert isinstance(pred, dict) and isinstance(gt, torch.Tensor)
cls_pred = pred['cls_res'].permute(0, 2, 3, 1).contiguous()
reg_pred = pred['reg_res'].permute(0, 2, 3, 1).contiguous()
gt = gt.permute(0, 2, 3, 1).contiguous()
k = 2 * self.fourier_degree + 1
tr_pred = cls_pred[:, :, :, :2].view(-1, 2)
tcl_pred = cls_pred[:, :, :, 2:].view(-1, 2)
x_pred = reg_pred[:, :, :, 0:k].view(-1, k)
y_pred = reg_pred[:, :, :, k:2 * k].view(-1, k)
tr_mask = gt[:, :, :, :1].view(-1)
tcl_mask = gt[:, :, :, 1:2].view(-1)
train_mask = gt[:, :, :, 2:3].view(-1)
x_map = gt[:, :, :, 3:3 + k].view(-1, k)
y_map = gt[:, :, :, 3 + k:].view(-1, k)
tr_train_mask = (train_mask * tr_mask).float()
# text region loss
loss_tr = self.loss_tr(tr_pred.softmax(-1)[:, 1], tr_mask, train_mask)
# text center line loss
tr_neg_mask = 1 - tr_train_mask
loss_tcl_positive = self.loss_center(
tcl_pred.softmax(-1)[:, 1], tcl_mask, tr_train_mask)
loss_tcl_negative = self.loss_center(
tcl_pred.softmax(-1)[:, 1], tcl_mask, tr_neg_mask)
loss_tcl = loss_tcl_positive + 0.5 * loss_tcl_negative
# regression loss
loss_reg_x = torch.tensor(0.).float().to(x_pred.device)
loss_reg_y = torch.tensor(0.).float().to(x_pred.device)
if tr_train_mask.sum().item() > 0:
weight = (tr_mask[tr_train_mask.bool()].float() +
tcl_mask[tr_train_mask.bool()].float()) / 2
weight = weight.contiguous().view(-1, 1)
ft_x, ft_y = self._fourier2poly(x_map, y_map)
ft_x_pre, ft_y_pre = self._fourier2poly(x_pred, y_pred)
loss_reg_x = torch.mean(weight * self.loss_reg_x(
ft_x_pre[tr_train_mask.bool()], ft_x[tr_train_mask.bool()]))
loss_reg_y = torch.mean(weight * self.loss_reg_x(
ft_y_pre[tr_train_mask.bool()], ft_y[tr_train_mask.bool()]))
return loss_tr, loss_tcl, loss_reg_x, loss_reg_y
def get_targets(self, data_samples: List[TextDetDataSample]) -> Tuple:
"""Generate loss targets for fcenet from data samples.
Args:
data_samples (list(TextDetDataSample)): Ground truth data samples.
Returns:
tuple[Tensor]: A tuple of three tensors from three different
feature level as FCENet targets.
"""
p3_maps, p4_maps, p5_maps = multi_apply(self._get_target_single,
data_samples)
p3_maps = torch.cat(p3_maps, 0)
p4_maps = torch.cat(p4_maps, 0)
p5_maps = torch.cat(p5_maps, 0)
return p3_maps, p4_maps, p5_maps
def _get_target_single(self, data_sample: TextDetDataSample) -> Tuple:
"""Generate loss target for fcenet from a data sample.
Args:
data_sample (TextDetDataSample): The data sample.
Returns:
tuple[Tensor]: A tuple of three tensors from three different
feature level as the targets of one prediction.
"""
img_size = data_sample.img_shape[:2]
text_polys = data_sample.gt_instances.polygons
ignore_flags = data_sample.gt_instances.ignored
p3_map, p4_map, p5_map = self._generate_level_targets(
img_size, text_polys, ignore_flags)
# to tesnor
p3_map = torch.from_numpy(p3_map).unsqueeze(0).float()
p4_map = torch.from_numpy(p4_map).unsqueeze(0).float()
p5_map = torch.from_numpy(p5_map).unsqueeze(0).float()
return p3_map, p4_map, p5_map
def _generate_level_targets(self,
img_size: Tuple[int, int],
text_polys: List[ArrayLike],
ignore_flags: Optional[torch.BoolTensor] = None
) -> Tuple[torch.Tensor]:
"""Generate targets for one feature level.
Args:
img_size (tuple(int, int)): The image size of (height, width).
text_polys (List[ndarray]): 2D array of text polygons.
ignore_flags (torch.BoolTensor, optional): Indicate whether the
corresponding text polygon is ignored. Defaults to None.
Returns:
tuple[Tensor]: A tuple of three tensors from one feature level
as the targets.
"""
h, w = img_size
lv_size_divs = self.level_size_divisors
lv_proportion_range = self.level_proportion_range
lv_size_divs = self.level_size_divisors
lv_proportion_range = self.level_proportion_range
lv_text_polys = [[] for i in range(len(lv_size_divs))]
lv_ignore_polys = [[] for i in range(len(lv_size_divs))]
level_maps = []
for poly_ind, poly in enumerate(text_polys):
poly = np.array(poly, dtype=np.int_).reshape((1, -1, 2))
_, _, box_w, box_h = cv2.boundingRect(poly)
proportion = max(box_h, box_w) / (h + 1e-8)
for ind, proportion_range in enumerate(lv_proportion_range):
if proportion_range[0] < proportion < proportion_range[1]:
if ignore_flags is not None and ignore_flags[poly_ind]:
lv_ignore_polys[ind].append(poly[0] /
lv_size_divs[ind])
else:
lv_text_polys[ind].append(poly[0] / lv_size_divs[ind])
for ind, size_divisor in enumerate(lv_size_divs):
current_level_maps = []
level_img_size = (h // size_divisor, w // size_divisor)
text_region = self._generate_text_region_mask(
level_img_size, lv_text_polys[ind])[None]
current_level_maps.append(text_region)
center_region = self._generate_center_region_mask(
level_img_size, lv_text_polys[ind])[None]
current_level_maps.append(center_region)
effective_mask = self._generate_effective_mask(
level_img_size, lv_ignore_polys[ind])[None]
current_level_maps.append(effective_mask)
fourier_real_map, fourier_image_maps = self._generate_fourier_maps(
level_img_size, lv_text_polys[ind])
current_level_maps.append(fourier_real_map)
current_level_maps.append(fourier_image_maps)
level_maps.append(np.concatenate(current_level_maps))
return level_maps
def _generate_center_region_mask(self, img_size: Tuple[int, int],
text_polys: ArrayLike) -> np.ndarray:
"""Generate text center region mask.
Args:
img_size (tuple): The image size of (height, width).
text_polys (list[ndarray]): The list of text polygons.
Returns:
ndarray: The text center region mask.
"""
assert isinstance(img_size, tuple)
h, w = img_size
center_region_mask = np.zeros((h, w), np.uint8)
center_region_boxes = []
for poly in text_polys:
polygon_points = poly.reshape(-1, 2)
_, _, top_line, bot_line = self._reorder_poly_edge(polygon_points)
resampled_top_line, resampled_bot_line = self._resample_sidelines(
top_line, bot_line, self.resample_step)
resampled_bot_line = resampled_bot_line[::-1]
center_line = (resampled_top_line + resampled_bot_line) / 2
line_head_shrink_len = norm(resampled_top_line[0] -
resampled_bot_line[0]) / 4.0
line_tail_shrink_len = norm(resampled_top_line[-1] -
resampled_bot_line[-1]) / 4.0
head_shrink_num = int(line_head_shrink_len // self.resample_step)
tail_shrink_num = int(line_tail_shrink_len // self.resample_step)
if len(center_line) > head_shrink_num + tail_shrink_num + 2:
center_line = center_line[head_shrink_num:len(center_line) -
tail_shrink_num]
resampled_top_line = resampled_top_line[
head_shrink_num:len(resampled_top_line) - tail_shrink_num]
resampled_bot_line = resampled_bot_line[
head_shrink_num:len(resampled_bot_line) - tail_shrink_num]
for i in range(0, len(center_line) - 1):
tl = center_line[i] + (resampled_top_line[i] - center_line[i]
) * self.center_region_shrink_ratio
tr = center_line[i + 1] + (
resampled_top_line[i + 1] -
center_line[i + 1]) * self.center_region_shrink_ratio
br = center_line[i + 1] + (
resampled_bot_line[i + 1] -
center_line[i + 1]) * self.center_region_shrink_ratio
bl = center_line[i] + (resampled_bot_line[i] - center_line[i]
) * self.center_region_shrink_ratio
current_center_box = np.vstack([tl, tr, br,
bl]).astype(np.int32)
center_region_boxes.append(current_center_box)
cv2.fillPoly(center_region_mask, center_region_boxes, 1)
return center_region_mask
def _generate_fourier_maps(self, img_size: Tuple[int, int],
text_polys: ArrayLike
) -> Tuple[np.ndarray, np.ndarray]:
"""Generate Fourier coefficient maps.
Args:
img_size (tuple): The image size of (height, width).
text_polys (list[ndarray]): The list of text polygons.
Returns:
tuple(ndarray, ndarray):
- fourier_real_map (ndarray): The Fourier coefficient real part
maps.
- fourier_image_map (ndarray): The Fourier coefficient image part
maps.
"""
assert isinstance(img_size, tuple)
h, w = img_size
k = self.fourier_degree
real_map = np.zeros((k * 2 + 1, h, w), dtype=np.float32)
imag_map = np.zeros((k * 2 + 1, h, w), dtype=np.float32)
for poly in text_polys:
mask = np.zeros((h, w), dtype=np.uint8)
polygon = np.array(poly).reshape((1, -1, 2))
cv2.fillPoly(mask, polygon.astype(np.int32), 1)
fourier_coeff = self._cal_fourier_signature(polygon[0], k)
for i in range(-k, k + 1):
if i != 0:
real_map[i + k, :, :] = mask * fourier_coeff[i + k, 0] + (
1 - mask) * real_map[i + k, :, :]
imag_map[i + k, :, :] = mask * fourier_coeff[i + k, 1] + (
1 - mask) * imag_map[i + k, :, :]
else:
yx = np.argwhere(mask > 0.5)
k_ind = np.ones((len(yx)), dtype=np.int64) * k
y, x = yx[:, 0], yx[:, 1]
real_map[k_ind, y, x] = fourier_coeff[k, 0] - x
imag_map[k_ind, y, x] = fourier_coeff[k, 1] - y
return real_map, imag_map
def _cal_fourier_signature(self, polygon: ArrayLike,
fourier_degree: int) -> np.ndarray:
"""Calculate Fourier signature from input polygon.
Args:
polygon (list[ndarray]): The input polygon.
fourier_degree (int): The maximum Fourier degree K.
Returns:
ndarray: An array shaped (2k+1, 2) containing
real part and image part of 2k+1 Fourier coefficients.
"""
resampled_polygon = self._resample_polygon(polygon)
resampled_polygon = self._normalize_polygon(resampled_polygon)
fourier_coeff = self._poly2fourier(resampled_polygon, fourier_degree)
fourier_coeff = self._clockwise(fourier_coeff, fourier_degree)
real_part = np.real(fourier_coeff).reshape((-1, 1))
image_part = np.imag(fourier_coeff).reshape((-1, 1))
fourier_signature = np.hstack([real_part, image_part])
return fourier_signature
def _resample_polygon(self,
polygon: ArrayLike,
n: int = 400) -> np.ndarray:
"""Resample one polygon with n points on its boundary.
Args:
polygon (list[ndarray]): The input polygon.
n (int): The number of resampled points. Defaults to 400.
Returns:
ndarray: The resampled polygon.
"""
length = []
for i in range(len(polygon)):
p1 = polygon[i]
if i == len(polygon) - 1:
p2 = polygon[0]
else:
p2 = polygon[i + 1]
length.append(((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)**0.5)
total_length = sum(length)
n_on_each_line = (np.array(length) / (total_length + 1e-8)) * n
n_on_each_line = n_on_each_line.astype(np.int32)
new_polygon = []
for i in range(len(polygon)):
num = n_on_each_line[i]
p1 = polygon[i]
if i == len(polygon) - 1:
p2 = polygon[0]
else:
p2 = polygon[i + 1]
if num == 0:
continue
dxdy = (p2 - p1) / num
for j in range(num):
point = p1 + dxdy * j
new_polygon.append(point)
return np.array(new_polygon)
def _normalize_polygon(self, polygon: ArrayLike) -> np.ndarray:
"""Normalize one polygon so that its start point is at right most.
Args:
polygon (list[ndarray]): The origin polygon.
Returns:
ndarray: The polygon with start point at right.
"""
temp_polygon = polygon - polygon.mean(axis=0)
x = np.abs(temp_polygon[:, 0])
y = temp_polygon[:, 1]
index_x = np.argsort(x)
index_y = np.argmin(y[index_x[:8]])
index = index_x[index_y]
new_polygon = np.concatenate([polygon[index:], polygon[:index]])
return new_polygon
def _clockwise(self, fourier_coeff: np.ndarray,
fourier_degree: int) -> np.ndarray:
"""Make sure the polygon reconstructed from Fourier coefficients c in
the clockwise direction.
Args:
fourier_coeff (ndarray[complex]): The Fourier coefficients.
fourier_degree: The maximum Fourier degree K.
Returns:
lost[float]: The polygon in clockwise point order.
"""
if np.abs(fourier_coeff[fourier_degree + 1]) > np.abs(
fourier_coeff[fourier_degree - 1]):
return fourier_coeff
elif np.abs(fourier_coeff[fourier_degree + 1]) < np.abs(
fourier_coeff[fourier_degree - 1]):
return fourier_coeff[::-1]
else:
if np.abs(fourier_coeff[fourier_degree + 2]) > np.abs(
fourier_coeff[fourier_degree - 2]):
return fourier_coeff
else:
return fourier_coeff[::-1]
def _poly2fourier(self, polygon: ArrayLike,
fourier_degree: int) -> np.ndarray:
"""Perform Fourier transformation to generate Fourier coefficients ck
from polygon.
Args:
polygon (list[ndarray]): An input polygon.
fourier_degree (int): The maximum Fourier degree K.
Returns:
ndarray: Fourier coefficients.
"""
points = polygon[:, 0] + polygon[:, 1] * 1j
c_fft = fft(points) / len(points)
c = np.hstack((c_fft[-fourier_degree:], c_fft[:fourier_degree + 1]))
return c
def _fourier2poly(self, real_maps: torch.Tensor,
imag_maps: torch.Tensor) -> Sequence[torch.Tensor]:
"""Transform Fourier coefficient maps to polygon maps.
Args:
real_maps (tensor): A map composed of the real parts of the
Fourier coefficients, whose shape is (-1, 2k+1)
imag_maps (tensor):A map composed of the imag parts of the
Fourier coefficients, whose shape is (-1, 2k+1)
Returns
tuple(tensor, tensor):
- x_maps (tensor): A map composed of the x value of the polygon
represented by n sample points (xn, yn), whose shape is (-1, n)
- y_maps (tensor): A map composed of the y value of the polygon
represented by n sample points (xn, yn), whose shape is (-1, n)
"""
device = real_maps.device
k_vect = torch.arange(
-self.fourier_degree,
self.fourier_degree + 1,
dtype=torch.float,
device=device).view(-1, 1)
i_vect = torch.arange(
0, self.num_sample, dtype=torch.float, device=device).view(1, -1)
transform_matrix = 2 * np.pi / self.num_sample * torch.mm(
k_vect, i_vect)
x1 = torch.einsum('ak, kn-> an', real_maps,
torch.cos(transform_matrix))
x2 = torch.einsum('ak, kn-> an', imag_maps,
torch.sin(transform_matrix))
y1 = torch.einsum('ak, kn-> an', real_maps,
torch.sin(transform_matrix))
y2 = torch.einsum('ak, kn-> an', imag_maps,
torch.cos(transform_matrix))
x_maps = x1 - x2
y_maps = y1 + y2
return x_maps, y_maps
|