File size: 23,399 Bytes
9bf4bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Sequence, Tuple, Union

import cv2
import numpy as np
import torch
from mmdet.models.utils import multi_apply
from numpy.fft import fft
from numpy.linalg import norm

from mmocr.registry import MODELS
from mmocr.structures import TextDetDataSample
from mmocr.utils.typing_utils import ArrayLike
from .textsnake_module_loss import TextSnakeModuleLoss


@MODELS.register_module()
class FCEModuleLoss(TextSnakeModuleLoss):
    """The class for implementing FCENet loss.

    FCENet(CVPR2021): `Fourier Contour Embedding for Arbitrary-shaped Text
    Detection <https://arxiv.org/abs/2104.10442>`_

    Args:
        fourier_degree (int) : The maximum Fourier transform degree k.
        num_sample (int) : The sampling points number of regression
            loss. If it is too small, fcenet tends to be overfitting.
        negative_ratio (float or int): Maximum ratio of negative
            samples to positive ones in OHEM. Defaults to 3.
        resample_step (float): The step size for resampling the text center
            line (TCL). It's better not to exceed half of the minimum width.
        center_region_shrink_ratio (float): The shrink ratio of text center
            region.
        level_size_divisors (tuple(int)): The downsample ratio on each level.
        level_proportion_range (tuple(tuple(int))): The range of text sizes
            assigned to each level.
        loss_tr (dict) : The loss config used to calculate the text region
            loss. Defaults to dict(type='MaskedBalancedBCELoss').
        loss_tcl (dict) : The loss config used to calculate the text center
            line loss. Defaults to dict(type='MaskedBCELoss').
        loss_reg_x (dict) : The loss config used to calculate the regression
            loss on x axis. Defaults to dict(type='MaskedSmoothL1Loss').
        loss_reg_y (dict) : The loss config used to calculate the regression
            loss on y axis. Defaults to dict(type='MaskedSmoothL1Loss').
    """

    def __init__(
        self,
        fourier_degree: int,
        num_sample: int,
        negative_ratio: Union[float, int] = 3.,
        resample_step: float = 4.0,
        center_region_shrink_ratio: float = 0.3,
        level_size_divisors: Tuple[int] = (8, 16, 32),
        level_proportion_range: Tuple[Tuple[int]] = ((0, 0.4), (0.3, 0.7),
                                                     (0.6, 1.0)),
        loss_tr: Dict = dict(type='MaskedBalancedBCELoss'),
        loss_tcl: Dict = dict(type='MaskedBCELoss'),
        loss_reg_x: Dict = dict(type='SmoothL1Loss', reduction='none'),
        loss_reg_y: Dict = dict(type='SmoothL1Loss', reduction='none'),
    ) -> None:
        super().__init__()
        self.fourier_degree = fourier_degree
        self.num_sample = num_sample
        self.resample_step = resample_step
        self.center_region_shrink_ratio = center_region_shrink_ratio
        self.level_size_divisors = level_size_divisors
        self.level_proportion_range = level_proportion_range

        loss_tr.update(negative_ratio=negative_ratio)
        self.loss_tr = MODELS.build(loss_tr)
        self.loss_tcl = MODELS.build(loss_tcl)
        self.loss_reg_x = MODELS.build(loss_reg_x)
        self.loss_reg_y = MODELS.build(loss_reg_y)

    def forward(self, preds: Sequence[Dict],
                data_samples: Sequence[TextDetDataSample]) -> Dict:
        """Compute FCENet loss.

        Args:
            preds (list[dict]): A list of dict with keys of ``cls_res``,
                ``reg_res`` corresponds to the classification result and
                regression result computed from the input tensor with the
                same index. They have the shapes of :math:`(N, C_{cls,i}, H_i,
                W_i)` and :math: `(N, C_{out,i}, H_i, W_i)`.
            data_samples (list[TextDetDataSample]): The data samples.

        Returns:
            dict: The dict for fcenet losses with loss_text, loss_center,
                loss_reg_x and loss_reg_y.
        """
        assert isinstance(preds, list) and len(preds) == 3
        p3_maps, p4_maps, p5_maps = self.get_targets(data_samples)
        device = preds[0]['cls_res'].device
        # to device
        gts = [p3_maps.to(device), p4_maps.to(device), p5_maps.to(device)]

        losses = multi_apply(self.forward_single, preds, gts)

        loss_tr = torch.tensor(0., device=device).float()
        loss_tcl = torch.tensor(0., device=device).float()
        loss_reg_x = torch.tensor(0., device=device).float()
        loss_reg_y = torch.tensor(0., device=device).float()

        for idx, loss in enumerate(losses):
            if idx == 0:
                loss_tr += sum(loss)
            elif idx == 1:
                loss_tcl += sum(loss)
            elif idx == 2:
                loss_reg_x += sum(loss)
            else:
                loss_reg_y += sum(loss)

        results = dict(
            loss_text=loss_tr,
            loss_center=loss_tcl,
            loss_reg_x=loss_reg_x,
            loss_reg_y=loss_reg_y,
        )

        return results

    def forward_single(self, pred: torch.Tensor,
                       gt: torch.Tensor) -> Sequence[torch.Tensor]:
        """Compute loss for one feature level.

        Args:
            pred (dict): A dict with keys ``cls_res`` and ``reg_res``
                corresponds to the classification result and regression result
                from one feature level.
            gt (Tensor): Ground truth for one feature level. Cls and reg
                targets are concatenated along the channel dimension.

        Returns:
            list[Tensor]: A list of losses for each feature level.
        """
        assert isinstance(pred, dict) and isinstance(gt, torch.Tensor)
        cls_pred = pred['cls_res'].permute(0, 2, 3, 1).contiguous()
        reg_pred = pred['reg_res'].permute(0, 2, 3, 1).contiguous()

        gt = gt.permute(0, 2, 3, 1).contiguous()

        k = 2 * self.fourier_degree + 1
        tr_pred = cls_pred[:, :, :, :2].view(-1, 2)
        tcl_pred = cls_pred[:, :, :, 2:].view(-1, 2)
        x_pred = reg_pred[:, :, :, 0:k].view(-1, k)
        y_pred = reg_pred[:, :, :, k:2 * k].view(-1, k)

        tr_mask = gt[:, :, :, :1].view(-1)
        tcl_mask = gt[:, :, :, 1:2].view(-1)
        train_mask = gt[:, :, :, 2:3].view(-1)
        x_map = gt[:, :, :, 3:3 + k].view(-1, k)
        y_map = gt[:, :, :, 3 + k:].view(-1, k)

        tr_train_mask = (train_mask * tr_mask).float()
        # text region loss
        loss_tr = self.loss_tr(tr_pred.softmax(-1)[:, 1], tr_mask, train_mask)

        # text center line loss
        tr_neg_mask = 1 - tr_train_mask
        loss_tcl_positive = self.loss_center(
            tcl_pred.softmax(-1)[:, 1], tcl_mask, tr_train_mask)
        loss_tcl_negative = self.loss_center(
            tcl_pred.softmax(-1)[:, 1], tcl_mask, tr_neg_mask)
        loss_tcl = loss_tcl_positive + 0.5 * loss_tcl_negative

        # regression loss
        loss_reg_x = torch.tensor(0.).float().to(x_pred.device)
        loss_reg_y = torch.tensor(0.).float().to(x_pred.device)
        if tr_train_mask.sum().item() > 0:
            weight = (tr_mask[tr_train_mask.bool()].float() +
                      tcl_mask[tr_train_mask.bool()].float()) / 2
            weight = weight.contiguous().view(-1, 1)

            ft_x, ft_y = self._fourier2poly(x_map, y_map)
            ft_x_pre, ft_y_pre = self._fourier2poly(x_pred, y_pred)

            loss_reg_x = torch.mean(weight * self.loss_reg_x(
                ft_x_pre[tr_train_mask.bool()], ft_x[tr_train_mask.bool()]))
            loss_reg_y = torch.mean(weight * self.loss_reg_x(
                ft_y_pre[tr_train_mask.bool()], ft_y[tr_train_mask.bool()]))

        return loss_tr, loss_tcl, loss_reg_x, loss_reg_y

    def get_targets(self, data_samples: List[TextDetDataSample]) -> Tuple:
        """Generate loss targets for fcenet from data samples.

        Args:
            data_samples (list(TextDetDataSample)): Ground truth data samples.

        Returns:
            tuple[Tensor]: A tuple of three tensors from three different
                feature level as FCENet targets.
        """
        p3_maps, p4_maps, p5_maps = multi_apply(self._get_target_single,
                                                data_samples)
        p3_maps = torch.cat(p3_maps, 0)
        p4_maps = torch.cat(p4_maps, 0)
        p5_maps = torch.cat(p5_maps, 0)

        return p3_maps, p4_maps, p5_maps

    def _get_target_single(self, data_sample: TextDetDataSample) -> Tuple:
        """Generate loss target for fcenet from a data sample.

        Args:
            data_sample (TextDetDataSample): The data sample.

        Returns:
            tuple[Tensor]: A tuple of three tensors from three different
            feature level as the targets of one prediction.
        """
        img_size = data_sample.img_shape[:2]
        text_polys = data_sample.gt_instances.polygons
        ignore_flags = data_sample.gt_instances.ignored

        p3_map, p4_map, p5_map = self._generate_level_targets(
            img_size, text_polys, ignore_flags)
        # to tesnor
        p3_map = torch.from_numpy(p3_map).unsqueeze(0).float()
        p4_map = torch.from_numpy(p4_map).unsqueeze(0).float()
        p5_map = torch.from_numpy(p5_map).unsqueeze(0).float()
        return p3_map, p4_map, p5_map

    def _generate_level_targets(self,
                                img_size: Tuple[int, int],
                                text_polys: List[ArrayLike],
                                ignore_flags: Optional[torch.BoolTensor] = None
                                ) -> Tuple[torch.Tensor]:
        """Generate targets for one feature level.

        Args:
            img_size (tuple(int, int)): The image size of (height, width).
            text_polys (List[ndarray]): 2D array of text polygons.
            ignore_flags (torch.BoolTensor, optional): Indicate whether the
                corresponding text polygon is ignored. Defaults to None.

        Returns:
            tuple[Tensor]: A tuple of three tensors from one feature level
            as the targets.
        """
        h, w = img_size
        lv_size_divs = self.level_size_divisors
        lv_proportion_range = self.level_proportion_range

        lv_size_divs = self.level_size_divisors
        lv_proportion_range = self.level_proportion_range
        lv_text_polys = [[] for i in range(len(lv_size_divs))]
        lv_ignore_polys = [[] for i in range(len(lv_size_divs))]
        level_maps = []

        for poly_ind, poly in enumerate(text_polys):
            poly = np.array(poly, dtype=np.int_).reshape((1, -1, 2))
            _, _, box_w, box_h = cv2.boundingRect(poly)
            proportion = max(box_h, box_w) / (h + 1e-8)

            for ind, proportion_range in enumerate(lv_proportion_range):
                if proportion_range[0] < proportion < proportion_range[1]:
                    if ignore_flags is not None and ignore_flags[poly_ind]:
                        lv_ignore_polys[ind].append(poly[0] /
                                                    lv_size_divs[ind])
                    else:
                        lv_text_polys[ind].append(poly[0] / lv_size_divs[ind])

        for ind, size_divisor in enumerate(lv_size_divs):
            current_level_maps = []
            level_img_size = (h // size_divisor, w // size_divisor)

            text_region = self._generate_text_region_mask(
                level_img_size, lv_text_polys[ind])[None]
            current_level_maps.append(text_region)

            center_region = self._generate_center_region_mask(
                level_img_size, lv_text_polys[ind])[None]
            current_level_maps.append(center_region)

            effective_mask = self._generate_effective_mask(
                level_img_size, lv_ignore_polys[ind])[None]
            current_level_maps.append(effective_mask)

            fourier_real_map, fourier_image_maps = self._generate_fourier_maps(
                level_img_size, lv_text_polys[ind])
            current_level_maps.append(fourier_real_map)
            current_level_maps.append(fourier_image_maps)

            level_maps.append(np.concatenate(current_level_maps))

        return level_maps

    def _generate_center_region_mask(self, img_size: Tuple[int, int],
                                     text_polys: ArrayLike) -> np.ndarray:
        """Generate text center region mask.

        Args:
            img_size (tuple): The image size of (height, width).
            text_polys (list[ndarray]): The list of text polygons.

        Returns:
            ndarray: The text center region mask.
        """

        assert isinstance(img_size, tuple)

        h, w = img_size

        center_region_mask = np.zeros((h, w), np.uint8)

        center_region_boxes = []
        for poly in text_polys:
            polygon_points = poly.reshape(-1, 2)
            _, _, top_line, bot_line = self._reorder_poly_edge(polygon_points)
            resampled_top_line, resampled_bot_line = self._resample_sidelines(
                top_line, bot_line, self.resample_step)
            resampled_bot_line = resampled_bot_line[::-1]
            center_line = (resampled_top_line + resampled_bot_line) / 2

            line_head_shrink_len = norm(resampled_top_line[0] -
                                        resampled_bot_line[0]) / 4.0
            line_tail_shrink_len = norm(resampled_top_line[-1] -
                                        resampled_bot_line[-1]) / 4.0
            head_shrink_num = int(line_head_shrink_len // self.resample_step)
            tail_shrink_num = int(line_tail_shrink_len // self.resample_step)
            if len(center_line) > head_shrink_num + tail_shrink_num + 2:
                center_line = center_line[head_shrink_num:len(center_line) -
                                          tail_shrink_num]
                resampled_top_line = resampled_top_line[
                    head_shrink_num:len(resampled_top_line) - tail_shrink_num]
                resampled_bot_line = resampled_bot_line[
                    head_shrink_num:len(resampled_bot_line) - tail_shrink_num]

            for i in range(0, len(center_line) - 1):
                tl = center_line[i] + (resampled_top_line[i] - center_line[i]
                                       ) * self.center_region_shrink_ratio
                tr = center_line[i + 1] + (
                    resampled_top_line[i + 1] -
                    center_line[i + 1]) * self.center_region_shrink_ratio
                br = center_line[i + 1] + (
                    resampled_bot_line[i + 1] -
                    center_line[i + 1]) * self.center_region_shrink_ratio
                bl = center_line[i] + (resampled_bot_line[i] - center_line[i]
                                       ) * self.center_region_shrink_ratio
                current_center_box = np.vstack([tl, tr, br,
                                                bl]).astype(np.int32)
                center_region_boxes.append(current_center_box)

        cv2.fillPoly(center_region_mask, center_region_boxes, 1)
        return center_region_mask

    def _generate_fourier_maps(self, img_size: Tuple[int, int],
                               text_polys: ArrayLike
                               ) -> Tuple[np.ndarray, np.ndarray]:
        """Generate Fourier coefficient maps.

        Args:
            img_size (tuple): The image size of (height, width).
            text_polys (list[ndarray]): The list of text polygons.

        Returns:
            tuple(ndarray, ndarray):

            - fourier_real_map (ndarray): The Fourier coefficient real part
                maps.
            - fourier_image_map (ndarray): The Fourier coefficient image part
                maps.
        """

        assert isinstance(img_size, tuple)

        h, w = img_size
        k = self.fourier_degree
        real_map = np.zeros((k * 2 + 1, h, w), dtype=np.float32)
        imag_map = np.zeros((k * 2 + 1, h, w), dtype=np.float32)

        for poly in text_polys:
            mask = np.zeros((h, w), dtype=np.uint8)
            polygon = np.array(poly).reshape((1, -1, 2))
            cv2.fillPoly(mask, polygon.astype(np.int32), 1)
            fourier_coeff = self._cal_fourier_signature(polygon[0], k)
            for i in range(-k, k + 1):
                if i != 0:
                    real_map[i + k, :, :] = mask * fourier_coeff[i + k, 0] + (
                        1 - mask) * real_map[i + k, :, :]
                    imag_map[i + k, :, :] = mask * fourier_coeff[i + k, 1] + (
                        1 - mask) * imag_map[i + k, :, :]
                else:
                    yx = np.argwhere(mask > 0.5)
                    k_ind = np.ones((len(yx)), dtype=np.int64) * k
                    y, x = yx[:, 0], yx[:, 1]
                    real_map[k_ind, y, x] = fourier_coeff[k, 0] - x
                    imag_map[k_ind, y, x] = fourier_coeff[k, 1] - y

        return real_map, imag_map

    def _cal_fourier_signature(self, polygon: ArrayLike,
                               fourier_degree: int) -> np.ndarray:
        """Calculate Fourier signature from input polygon.

        Args:
              polygon (list[ndarray]): The input polygon.
              fourier_degree (int): The maximum Fourier degree K.
        Returns:
              ndarray: An array shaped (2k+1, 2) containing
                  real part and image part of 2k+1 Fourier coefficients.
        """
        resampled_polygon = self._resample_polygon(polygon)
        resampled_polygon = self._normalize_polygon(resampled_polygon)

        fourier_coeff = self._poly2fourier(resampled_polygon, fourier_degree)
        fourier_coeff = self._clockwise(fourier_coeff, fourier_degree)

        real_part = np.real(fourier_coeff).reshape((-1, 1))
        image_part = np.imag(fourier_coeff).reshape((-1, 1))
        fourier_signature = np.hstack([real_part, image_part])

        return fourier_signature

    def _resample_polygon(self,
                          polygon: ArrayLike,
                          n: int = 400) -> np.ndarray:
        """Resample one polygon with n points on its boundary.

        Args:
            polygon (list[ndarray]): The input polygon.
            n (int): The number of resampled points. Defaults to 400.
        Returns:
            ndarray: The resampled polygon.
        """
        length = []

        for i in range(len(polygon)):
            p1 = polygon[i]
            if i == len(polygon) - 1:
                p2 = polygon[0]
            else:
                p2 = polygon[i + 1]
            length.append(((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)**0.5)

        total_length = sum(length)
        n_on_each_line = (np.array(length) / (total_length + 1e-8)) * n
        n_on_each_line = n_on_each_line.astype(np.int32)
        new_polygon = []

        for i in range(len(polygon)):
            num = n_on_each_line[i]
            p1 = polygon[i]
            if i == len(polygon) - 1:
                p2 = polygon[0]
            else:
                p2 = polygon[i + 1]

            if num == 0:
                continue

            dxdy = (p2 - p1) / num
            for j in range(num):
                point = p1 + dxdy * j
                new_polygon.append(point)

        return np.array(new_polygon)

    def _normalize_polygon(self, polygon: ArrayLike) -> np.ndarray:
        """Normalize one polygon so that its start point is at right most.

        Args:
            polygon (list[ndarray]): The origin polygon.
        Returns:
            ndarray: The polygon with start point at right.
        """
        temp_polygon = polygon - polygon.mean(axis=0)
        x = np.abs(temp_polygon[:, 0])
        y = temp_polygon[:, 1]
        index_x = np.argsort(x)
        index_y = np.argmin(y[index_x[:8]])
        index = index_x[index_y]
        new_polygon = np.concatenate([polygon[index:], polygon[:index]])
        return new_polygon

    def _clockwise(self, fourier_coeff: np.ndarray,
                   fourier_degree: int) -> np.ndarray:
        """Make sure the polygon reconstructed from Fourier coefficients c in
        the clockwise direction.

        Args:
            fourier_coeff (ndarray[complex]): The Fourier coefficients.
            fourier_degree: The maximum Fourier degree K.
        Returns:
            lost[float]: The polygon in clockwise point order.
        """
        if np.abs(fourier_coeff[fourier_degree + 1]) > np.abs(
                fourier_coeff[fourier_degree - 1]):
            return fourier_coeff
        elif np.abs(fourier_coeff[fourier_degree + 1]) < np.abs(
                fourier_coeff[fourier_degree - 1]):
            return fourier_coeff[::-1]
        else:
            if np.abs(fourier_coeff[fourier_degree + 2]) > np.abs(
                    fourier_coeff[fourier_degree - 2]):
                return fourier_coeff
            else:
                return fourier_coeff[::-1]

    def _poly2fourier(self, polygon: ArrayLike,
                      fourier_degree: int) -> np.ndarray:
        """Perform Fourier transformation to generate Fourier coefficients ck
        from polygon.

        Args:
            polygon (list[ndarray]): An input polygon.
            fourier_degree (int): The maximum Fourier degree K.
        Returns:
            ndarray: Fourier coefficients.
        """
        points = polygon[:, 0] + polygon[:, 1] * 1j
        c_fft = fft(points) / len(points)
        c = np.hstack((c_fft[-fourier_degree:], c_fft[:fourier_degree + 1]))
        return c

    def _fourier2poly(self, real_maps: torch.Tensor,
                      imag_maps: torch.Tensor) -> Sequence[torch.Tensor]:
        """Transform Fourier coefficient maps to polygon maps.

        Args:
            real_maps (tensor): A map composed of the real parts of the
                Fourier coefficients, whose shape is (-1, 2k+1)
            imag_maps (tensor):A map composed of the imag parts of the
                Fourier coefficients, whose shape is (-1, 2k+1)

        Returns
            tuple(tensor, tensor):

            - x_maps (tensor): A map composed of the x value of the polygon
                represented by n sample points (xn, yn), whose shape is (-1, n)
            - y_maps (tensor): A map composed of the y value of the polygon
                represented by n sample points (xn, yn), whose shape is (-1, n)
        """

        device = real_maps.device

        k_vect = torch.arange(
            -self.fourier_degree,
            self.fourier_degree + 1,
            dtype=torch.float,
            device=device).view(-1, 1)
        i_vect = torch.arange(
            0, self.num_sample, dtype=torch.float, device=device).view(1, -1)

        transform_matrix = 2 * np.pi / self.num_sample * torch.mm(
            k_vect, i_vect)

        x1 = torch.einsum('ak, kn-> an', real_maps,
                          torch.cos(transform_matrix))
        x2 = torch.einsum('ak, kn-> an', imag_maps,
                          torch.sin(transform_matrix))
        y1 = torch.einsum('ak, kn-> an', real_maps,
                          torch.sin(transform_matrix))
        y2 = torch.einsum('ak, kn-> an', imag_maps,
                          torch.cos(transform_matrix))

        x_maps = x1 - x2
        y_maps = y1 + y2

        return x_maps, y_maps