File size: 27,634 Bytes
9bf4bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Sequence, Tuple

import cv2
import numpy as np
import torch
from mmcv.image import impad, imrescale
from mmdet.models.utils import multi_apply
from numpy import ndarray
from numpy.linalg import norm
from torch import Tensor

from mmocr.registry import MODELS
from mmocr.structures import TextDetDataSample
from .seg_based_module_loss import SegBasedModuleLoss


@MODELS.register_module()
class TextSnakeModuleLoss(SegBasedModuleLoss):
    """The class for implementing TextSnake loss. This is partially adapted
    from https://github.com/princewang1994/TextSnake.pytorch.

    TextSnake: `A Flexible Representation for Detecting Text of Arbitrary
    Shapes <https://arxiv.org/abs/1807.01544>`_.

    Args:
        ohem_ratio (float): The negative/positive ratio in ohem.
        downsample_ratio (float): Downsample ratio. Defaults to 1.0. TODO:
            remove it.
        orientation_thr (float): The threshold for distinguishing between
            head edge and tail edge among the horizontal and vertical edges
            of a quadrangle.
        resample_step (float): The step of resampling.
        center_region_shrink_ratio (float): The shrink ratio of text center.
        loss_text (dict): The loss config used to calculate the text loss.
        loss_center (dict): The loss config used to calculate the center loss.
        loss_radius (dict): The loss config used to calculate the radius loss.
        loss_sin (dict): The loss config used to calculate the sin loss.
        loss_cos (dict): The loss config used to calculate the cos loss.
    """

    def __init__(
        self,
        ohem_ratio: float = 3.0,
        downsample_ratio: float = 1.0,
        orientation_thr: float = 2.0,
        resample_step: float = 4.0,
        center_region_shrink_ratio: float = 0.3,
        loss_text: Dict = dict(
            type='MaskedBalancedBCEWithLogitsLoss',
            fallback_negative_num=100,
            eps=1e-5),
        loss_center: Dict = dict(type='MaskedBCEWithLogitsLoss'),
        loss_radius: Dict = dict(type='MaskedSmoothL1Loss'),
        loss_sin: Dict = dict(type='MaskedSmoothL1Loss'),
        loss_cos: Dict = dict(type='MaskedSmoothL1Loss')
    ) -> None:
        super().__init__()
        self.ohem_ratio = ohem_ratio
        self.downsample_ratio = downsample_ratio
        self.orientation_thr = orientation_thr
        self.resample_step = resample_step
        self.center_region_shrink_ratio = center_region_shrink_ratio
        self.eps = 1e-8
        self.loss_text = MODELS.build(loss_text)
        self.loss_center = MODELS.build(loss_center)
        self.loss_radius = MODELS.build(loss_radius)
        self.loss_sin = MODELS.build(loss_sin)
        self.loss_cos = MODELS.build(loss_cos)

    def _batch_pad(self, masks: List[ndarray],
                   target_sz: Tuple[int, int]) -> ndarray:
        """Pad the masks to the right and bottom side to the target size and
        pack them into a batch.

        Args:
            mask (list[ndarray]): The masks to be padded.
            target_sz (tuple(int, int)): The target tensor of size
                :math:`(H, W)`.

        Returns:
            ndarray: A batch of padded mask.
        """
        batch = []
        for mask in masks:
            # H x W
            mask_sz = mask.shape
            # left, top, right, bottom
            padding = (0, 0, target_sz[1] - mask_sz[1],
                       target_sz[0] - mask_sz[0])
            padded_mask = impad(
                mask, padding=padding, padding_mode='constant', pad_val=0)
            batch.append(np.expand_dims(padded_mask, axis=0))
        return np.concatenate(batch)

    def forward(self, preds: Tensor,
                data_samples: Sequence[TextDetDataSample]) -> Dict:
        """
        Args:
            preds (Tensor): The prediction map of shape
                :math:`(N, 5, H, W)`, where each dimension is the map of
                "text_region", "center_region", "sin_map", "cos_map", and
                "radius_map" respectively.
            data_samples (list[TextDetDataSample]): The data samples.

        Returns:
            dict:  A loss dict with ``loss_text``, ``loss_center``,
            ``loss_radius``, ``loss_sin`` and ``loss_cos``.
        """

        (gt_text_masks, gt_masks, gt_center_region_masks, gt_radius_maps,
         gt_sin_maps, gt_cos_maps) = self.get_targets(data_samples)

        pred_text_region = preds[:, 0, :, :]
        pred_center_region = preds[:, 1, :, :]
        pred_sin_map = preds[:, 2, :, :]
        pred_cos_map = preds[:, 3, :, :]
        pred_radius_map = preds[:, 4, :, :]
        feature_sz = preds.size()
        device = preds.device

        mapping = {
            'gt_text_masks': gt_text_masks,
            'gt_center_region_masks': gt_center_region_masks,
            'gt_masks': gt_masks,
            'gt_radius_maps': gt_radius_maps,
            'gt_sin_maps': gt_sin_maps,
            'gt_cos_maps': gt_cos_maps
        }
        gt = {}
        for key, value in mapping.items():
            gt[key] = value
            if abs(self.downsample_ratio - 1.0) < 1e-2:
                gt[key] = self._batch_pad(gt[key], feature_sz[2:])
            else:
                gt[key] = [
                    imrescale(
                        mask,
                        scale=self.downsample_ratio,
                        interpolation='nearest') for mask in gt[key]
                ]
                gt[key] = self._batch_pad(gt[key], feature_sz[2:])
                if key == 'gt_radius_maps':
                    gt[key] *= self.downsample_ratio
            gt[key] = torch.from_numpy(gt[key]).float().to(device)

        scale = torch.sqrt(1.0 / (pred_sin_map**2 + pred_cos_map**2 + 1e-8))
        pred_sin_map = pred_sin_map * scale
        pred_cos_map = pred_cos_map * scale

        loss_text = self.loss_text(pred_text_region, gt['gt_text_masks'],
                                   gt['gt_masks'])

        text_mask = (gt['gt_text_masks'] * gt['gt_masks']).float()
        loss_center = self.loss_center(pred_center_region,
                                       gt['gt_center_region_masks'], text_mask)

        center_mask = (gt['gt_center_region_masks'] * gt['gt_masks']).float()
        map_sz = pred_radius_map.size()
        ones = torch.ones(map_sz, dtype=torch.float, device=device)
        loss_radius = self.loss_radius(
            pred_radius_map / (gt['gt_radius_maps'] + 1e-2), ones, center_mask)
        loss_sin = self.loss_sin(pred_sin_map, gt['gt_sin_maps'], center_mask)
        loss_cos = self.loss_cos(pred_cos_map, gt['gt_cos_maps'], center_mask)

        results = dict(
            loss_text=loss_text,
            loss_center=loss_center,
            loss_radius=loss_radius,
            loss_sin=loss_sin,
            loss_cos=loss_cos)

        return results

    def get_targets(self, data_samples: List[TextDetDataSample]) -> Tuple:
        """Generate loss targets from data samples.

        Args:
            data_samples (list(TextDetDataSample)): Ground truth data samples.

        Returns:
            tuple(gt_text_masks, gt_masks, gt_center_region_masks,
            gt_radius_maps, gt_sin_maps, gt_cos_maps):
            A tuple of six lists of ndarrays as the targets.
        """
        return multi_apply(self._get_target_single, data_samples)

    def _get_target_single(self, data_sample: TextDetDataSample) -> Tuple:
        """Generate loss target from a data sample.

        Args:
            data_sample (TextDetDataSample): The data sample.

        Returns:
            tuple(gt_text_mask, gt_mask, gt_center_region_mask, gt_radius_map,
            gt_sin_map, gt_cos_map):
            A tuple of six ndarrays as the targets of one prediction.
        """

        gt_instances = data_sample.gt_instances
        ignore_flags = gt_instances.ignored

        polygons = gt_instances[~ignore_flags].polygons
        ignored_polygons = gt_instances[ignore_flags].polygons

        gt_text_mask = self._generate_text_region_mask(data_sample.img_shape,
                                                       polygons)
        gt_mask = self._generate_effective_mask(data_sample.img_shape,
                                                ignored_polygons)

        (gt_center_region_mask, gt_radius_map, gt_sin_map,
         gt_cos_map) = self._generate_center_mask_attrib_maps(
             data_sample.img_shape, polygons)

        return (gt_text_mask, gt_mask, gt_center_region_mask, gt_radius_map,
                gt_sin_map, gt_cos_map)

    def _generate_text_region_mask(self, img_size: Tuple[int, int],
                                   text_polys: List[ndarray]) -> ndarray:
        """Generate text center region mask and geometry attribute maps.

        Args:
            img_size (tuple): The image size (height, width).
            text_polys (list[ndarray]): The list of text polygons.

        Returns:
            text_region_mask (ndarray): The text region mask.
        """

        assert isinstance(img_size, tuple)

        text_region_mask = np.zeros(img_size, dtype=np.uint8)

        for poly in text_polys:
            polygon = np.array(poly, dtype=np.int32).reshape((1, -1, 2))
            cv2.fillPoly(text_region_mask, polygon, 1)

        return text_region_mask

    def _generate_center_mask_attrib_maps(
        self, img_size: Tuple[int, int], text_polys: List[ndarray]
    ) -> Tuple[ndarray, ndarray, ndarray, ndarray]:
        """Generate text center region mask and geometric attribute maps.

        Args:
            img_size (tuple(int, int)): The image size of (height, width).
            text_polys (list[ndarray]): The list of text polygons.

        Returns:
            Tuple(center_region_mask, radius_map, sin_map, cos_map):

            - center_region_mask (ndarray): The text center region mask.
            - radius_map (ndarray): The distance map from each pixel in text
              center region to top sideline.
            - sin_map (ndarray): The sin(theta) map where theta is the angle
              between vector (top point - bottom point) and vector (1, 0).
            - cos_map (ndarray): The cos(theta) map where theta is the angle
              between vector (top point - bottom point) and vector (1, 0).
        """

        assert isinstance(img_size, tuple)

        center_region_mask = np.zeros(img_size, np.uint8)
        radius_map = np.zeros(img_size, dtype=np.float32)
        sin_map = np.zeros(img_size, dtype=np.float32)
        cos_map = np.zeros(img_size, dtype=np.float32)

        for poly in text_polys:
            polygon_points = np.array(poly).reshape(-1, 2)

            n = len(polygon_points)
            keep_inds = []
            for i in range(n):
                if norm(polygon_points[i] -
                        polygon_points[(i + 1) % n]) > 1e-5:
                    keep_inds.append(i)
            polygon_points = polygon_points[keep_inds]

            _, _, top_line, bot_line = self._reorder_poly_edge(polygon_points)
            resampled_top_line, resampled_bot_line = self._resample_sidelines(
                top_line, bot_line, self.resample_step)
            resampled_bot_line = resampled_bot_line[::-1]
            center_line = (resampled_top_line + resampled_bot_line) / 2

            if self.vector_slope(center_line[-1] - center_line[0]) > 0.9:
                if (center_line[-1] - center_line[0])[1] < 0:
                    center_line = center_line[::-1]
                    resampled_top_line = resampled_top_line[::-1]
                    resampled_bot_line = resampled_bot_line[::-1]
            else:
                if (center_line[-1] - center_line[0])[0] < 0:
                    center_line = center_line[::-1]
                    resampled_top_line = resampled_top_line[::-1]
                    resampled_bot_line = resampled_bot_line[::-1]

            line_head_shrink_len = norm(resampled_top_line[0] -
                                        resampled_bot_line[0]) / 4.0
            line_tail_shrink_len = norm(resampled_top_line[-1] -
                                        resampled_bot_line[-1]) / 4.0
            head_shrink_num = int(line_head_shrink_len // self.resample_step)
            tail_shrink_num = int(line_tail_shrink_len // self.resample_step)

            if len(center_line) > head_shrink_num + tail_shrink_num + 2:
                center_line = center_line[head_shrink_num:len(center_line) -
                                          tail_shrink_num]
                resampled_top_line = resampled_top_line[
                    head_shrink_num:len(resampled_top_line) - tail_shrink_num]
                resampled_bot_line = resampled_bot_line[
                    head_shrink_num:len(resampled_bot_line) - tail_shrink_num]

            self._draw_center_region_maps(resampled_top_line,
                                          resampled_bot_line, center_line,
                                          center_region_mask, radius_map,
                                          sin_map, cos_map,
                                          self.center_region_shrink_ratio)

        return center_region_mask, radius_map, sin_map, cos_map

    def _reorder_poly_edge(self, points: ndarray
                           ) -> Tuple[ndarray, ndarray, ndarray, ndarray]:
        """Get the respective points composing head edge, tail edge, top
        sideline and bottom sideline.

        Args:
            points (ndarray): The points composing a text polygon.

        Returns:
            Tuple(center_region_mask, radius_map, sin_map, cos_map):

            - head_edge (ndarray): The two points composing the head edge of
              text polygon.
            - tail_edge (ndarray): The two points composing the tail edge of
              text polygon.
            - top_sideline (ndarray): The points composing top curved sideline
              of text polygon.
            - bot_sideline (ndarray): The points composing bottom curved
              sideline of text polygon.
        """

        assert points.ndim == 2
        assert points.shape[0] >= 4
        assert points.shape[1] == 2

        head_inds, tail_inds = self._find_head_tail(points,
                                                    self.orientation_thr)
        head_edge, tail_edge = points[head_inds], points[tail_inds]

        pad_points = np.vstack([points, points])
        if tail_inds[1] < 1:
            tail_inds[1] = len(points)
        sideline1 = pad_points[head_inds[1]:tail_inds[1]]
        sideline2 = pad_points[tail_inds[1]:(head_inds[1] + len(points))]
        sideline_mean_shift = np.mean(
            sideline1, axis=0) - np.mean(
                sideline2, axis=0)

        if sideline_mean_shift[1] > 0:
            top_sideline, bot_sideline = sideline2, sideline1
        else:
            top_sideline, bot_sideline = sideline1, sideline2

        return head_edge, tail_edge, top_sideline, bot_sideline

    def _find_head_tail(self, points: ndarray,
                        orientation_thr: float) -> Tuple[List[int], List[int]]:
        """Find the head edge and tail edge of a text polygon.

        Args:
            points (ndarray): The points composing a text polygon.
            orientation_thr (float): The threshold for distinguishing between
                head edge and tail edge among the horizontal and vertical edges
                of a quadrangle.

        Returns:
            Tuple(head_inds, tail_inds):

            - head_inds (list[int]): The indexes of two points composing head
              edge.
            - tail_inds (list[int]): The indexes of two points composing tail
              edge.
        """

        assert points.ndim == 2
        assert points.shape[0] >= 4
        assert points.shape[1] == 2
        assert isinstance(orientation_thr, float)

        if len(points) > 4:
            pad_points = np.vstack([points, points[0]])
            edge_vec = pad_points[1:] - pad_points[:-1]

            theta_sum = []
            adjacent_vec_theta = []
            for i, edge_vec1 in enumerate(edge_vec):
                adjacent_ind = [x % len(edge_vec) for x in [i - 1, i + 1]]
                adjacent_edge_vec = edge_vec[adjacent_ind]
                temp_theta_sum = np.sum(
                    self.vector_angle(edge_vec1, adjacent_edge_vec))
                temp_adjacent_theta = self.vector_angle(
                    adjacent_edge_vec[0], adjacent_edge_vec[1])
                theta_sum.append(temp_theta_sum)
                adjacent_vec_theta.append(temp_adjacent_theta)
            theta_sum_score = np.array(theta_sum) / np.pi
            adjacent_theta_score = np.array(adjacent_vec_theta) / np.pi
            poly_center = np.mean(points, axis=0)
            edge_dist = np.maximum(
                norm(pad_points[1:] - poly_center, axis=-1),
                norm(pad_points[:-1] - poly_center, axis=-1))
            dist_score = edge_dist / (np.max(edge_dist) + self.eps)
            position_score = np.zeros(len(edge_vec))
            score = 0.5 * theta_sum_score + 0.15 * adjacent_theta_score
            score += 0.35 * dist_score
            if len(points) % 2 == 0:
                position_score[(len(score) // 2 - 1)] += 1
                position_score[-1] += 1
            score += 0.1 * position_score
            pad_score = np.concatenate([score, score])
            score_matrix = np.zeros((len(score), len(score) - 3))
            x = np.arange(len(score) - 3) / float(len(score) - 4)
            gaussian = 1. / (np.sqrt(2. * np.pi) * 0.5) * np.exp(-np.power(
                (x - 0.5) / 0.5, 2.) / 2)
            gaussian = gaussian / np.max(gaussian)
            for i in range(len(score)):
                score_matrix[i, :] = score[i] + pad_score[
                    (i + 2):(i + len(score) - 1)] * gaussian * 0.3

            head_start, tail_increment = np.unravel_index(
                score_matrix.argmax(), score_matrix.shape)
            tail_start = (head_start + tail_increment + 2) % len(points)
            head_end = (head_start + 1) % len(points)
            tail_end = (tail_start + 1) % len(points)

            if head_end > tail_end:
                head_start, tail_start = tail_start, head_start
                head_end, tail_end = tail_end, head_end
            head_inds = [head_start, head_end]
            tail_inds = [tail_start, tail_end]
        else:
            if self.vector_slope(points[1] - points[0]) + self.vector_slope(
                    points[3] - points[2]) < self.vector_slope(
                        points[2] - points[1]) + self.vector_slope(points[0] -
                                                                   points[3]):
                horizontal_edge_inds = [[0, 1], [2, 3]]
                vertical_edge_inds = [[3, 0], [1, 2]]
            else:
                horizontal_edge_inds = [[3, 0], [1, 2]]
                vertical_edge_inds = [[0, 1], [2, 3]]

            vertical_len_sum = norm(points[vertical_edge_inds[0][0]] -
                                    points[vertical_edge_inds[0][1]]) + norm(
                                        points[vertical_edge_inds[1][0]] -
                                        points[vertical_edge_inds[1][1]])
            horizontal_len_sum = norm(
                points[horizontal_edge_inds[0][0]] -
                points[horizontal_edge_inds[0][1]]) + norm(
                    points[horizontal_edge_inds[1][0]] -
                    points[horizontal_edge_inds[1][1]])

            if vertical_len_sum > horizontal_len_sum * orientation_thr:
                head_inds = horizontal_edge_inds[0]
                tail_inds = horizontal_edge_inds[1]
            else:
                head_inds = vertical_edge_inds[0]
                tail_inds = vertical_edge_inds[1]

        return head_inds, tail_inds

    def _resample_line(self, line: ndarray, n: int) -> ndarray:
        """Resample n points on a line.

        Args:
            line (ndarray): The points composing a line.
            n (int): The resampled points number.

        Returns:
            resampled_line (ndarray): The points composing the resampled line.
        """

        assert line.ndim == 2
        assert line.shape[0] >= 2
        assert line.shape[1] == 2
        assert isinstance(n, int)
        assert n > 2

        edges_length, total_length = self._cal_curve_length(line)
        t_org = np.insert(np.cumsum(edges_length), 0, 0)
        unit_t = total_length / (n - 1)
        t_equidistant = np.arange(1, n - 1, dtype=np.float32) * unit_t
        edge_ind = 0
        points = [line[0]]
        for t in t_equidistant:
            while edge_ind < len(edges_length) - 1 and t > t_org[edge_ind + 1]:
                edge_ind += 1
            t_l, t_r = t_org[edge_ind], t_org[edge_ind + 1]
            weight = np.array([t_r - t, t - t_l], dtype=np.float32) / (
                t_r - t_l + self.eps)
            p_coords = np.dot(weight, line[[edge_ind, edge_ind + 1]])
            points.append(p_coords)
        points.append(line[-1])
        resampled_line = np.vstack(points)

        return resampled_line

    def _resample_sidelines(self, sideline1: ndarray, sideline2: ndarray,
                            resample_step: float) -> Tuple[ndarray, ndarray]:
        """Resample two sidelines to be of the same points number according to
        step size.

        Args:
            sideline1 (ndarray): The points composing a sideline of a text
                polygon.
            sideline2 (ndarray): The points composing another sideline of a
                text polygon.
            resample_step (float): The resampled step size.

        Returns:
            Tuple(resampled_line1, resampled_line2):

            - resampled_line1 (ndarray): The resampled line 1.
            - resampled_line2 (ndarray): The resampled line 2.
        """

        assert sideline1.ndim == sideline2.ndim == 2
        assert sideline1.shape[1] == sideline2.shape[1] == 2
        assert sideline1.shape[0] >= 2
        assert sideline2.shape[0] >= 2
        assert isinstance(resample_step, float)

        _, length1 = self._cal_curve_length(sideline1)
        _, length2 = self._cal_curve_length(sideline2)

        avg_length = (length1 + length2) / 2
        resample_point_num = max(int(float(avg_length) / resample_step) + 1, 3)

        resampled_line1 = self._resample_line(sideline1, resample_point_num)
        resampled_line2 = self._resample_line(sideline2, resample_point_num)

        return resampled_line1, resampled_line2

    def _cal_curve_length(self, line: ndarray) -> Tuple[ndarray, float]:
        """Calculate the length of each edge on the discrete curve and the sum.

        Args:
            line (ndarray): The points composing a discrete curve.

        Returns:
            Tuple(edges_length, total_length):

            - edge_length (ndarray): The length of each edge on the
              discrete curve.
            - total_length (float): The total length of the discrete
              curve.
        """

        assert line.ndim == 2
        assert len(line) >= 2

        edges_length = np.sqrt((line[1:, 0] - line[:-1, 0])**2 +
                               (line[1:, 1] - line[:-1, 1])**2)
        total_length = np.sum(edges_length)
        return edges_length, total_length

    def _draw_center_region_maps(self, top_line: ndarray, bot_line: ndarray,
                                 center_line: ndarray,
                                 center_region_mask: ndarray,
                                 radius_map: ndarray, sin_map: ndarray,
                                 cos_map: ndarray,
                                 region_shrink_ratio: float) -> None:
        """Draw attributes on text center region.

        Args:
            top_line (ndarray): The points composing top curved sideline of
                text polygon.
            bot_line (ndarray): The points composing bottom curved sideline
                of text polygon.
            center_line (ndarray): The points composing the center line of text
                instance.
            center_region_mask (ndarray): The text center region mask.
            radius_map (ndarray): The map where the distance from point to
                sidelines will be drawn on for each pixel in text center
                region.
            sin_map (ndarray): The map where vector_sin(theta) will be drawn
                on text center regions. Theta is the angle between tangent
                line and vector (1, 0).
            cos_map (ndarray): The map where vector_cos(theta) will be drawn on
                text center regions. Theta is the angle between tangent line
                and vector (1, 0).
            region_shrink_ratio (float): The shrink ratio of text center.
        """

        assert top_line.shape == bot_line.shape == center_line.shape
        assert (center_region_mask.shape == radius_map.shape == sin_map.shape
                == cos_map.shape)
        assert isinstance(region_shrink_ratio, float)
        for i in range(0, len(center_line) - 1):

            top_mid_point = (top_line[i] + top_line[i + 1]) / 2
            bot_mid_point = (bot_line[i] + bot_line[i + 1]) / 2
            radius = norm(top_mid_point - bot_mid_point) / 2

            text_direction = center_line[i + 1] - center_line[i]
            sin_theta = self.vector_sin(text_direction)
            cos_theta = self.vector_cos(text_direction)

            tl = center_line[i] + (top_line[i] -
                                   center_line[i]) * region_shrink_ratio
            tr = center_line[i + 1] + (
                top_line[i + 1] - center_line[i + 1]) * region_shrink_ratio
            br = center_line[i + 1] + (
                bot_line[i + 1] - center_line[i + 1]) * region_shrink_ratio
            bl = center_line[i] + (bot_line[i] -
                                   center_line[i]) * region_shrink_ratio
            current_center_box = np.vstack([tl, tr, br, bl]).astype(np.int32)

            cv2.fillPoly(center_region_mask, [current_center_box], color=1)
            cv2.fillPoly(sin_map, [current_center_box], color=sin_theta)
            cv2.fillPoly(cos_map, [current_center_box], color=cos_theta)
            cv2.fillPoly(radius_map, [current_center_box], color=radius)

    def vector_angle(self, vec1: ndarray, vec2: ndarray) -> ndarray:
        """Compute the angle between two vectors."""
        if vec1.ndim > 1:
            unit_vec1 = vec1 / (norm(vec1, axis=-1) + self.eps).reshape(
                (-1, 1))
        else:
            unit_vec1 = vec1 / (norm(vec1, axis=-1) + self.eps)
        if vec2.ndim > 1:
            unit_vec2 = vec2 / (norm(vec2, axis=-1) + self.eps).reshape(
                (-1, 1))
        else:
            unit_vec2 = vec2 / (norm(vec2, axis=-1) + self.eps)
        return np.arccos(
            np.clip(np.sum(unit_vec1 * unit_vec2, axis=-1), -1.0, 1.0))

    def vector_slope(self, vec: ndarray) -> float:
        """Compute the slope of a vector."""
        assert len(vec) == 2
        return abs(vec[1] / (vec[0] + self.eps))

    def vector_sin(self, vec: ndarray) -> float:
        """Compute the sin of the angle between vector and x-axis."""
        assert len(vec) == 2
        return vec[1] / (norm(vec) + self.eps)

    def vector_cos(self, vec: ndarray) -> float:
        """Compute the cos of the angle between vector and x-axis."""
        assert len(vec) == 2
        return vec[0] / (norm(vec) + self.eps)