Spaces:
Running
Running
File size: 27,634 Bytes
9bf4bd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Sequence, Tuple
import cv2
import numpy as np
import torch
from mmcv.image import impad, imrescale
from mmdet.models.utils import multi_apply
from numpy import ndarray
from numpy.linalg import norm
from torch import Tensor
from mmocr.registry import MODELS
from mmocr.structures import TextDetDataSample
from .seg_based_module_loss import SegBasedModuleLoss
@MODELS.register_module()
class TextSnakeModuleLoss(SegBasedModuleLoss):
"""The class for implementing TextSnake loss. This is partially adapted
from https://github.com/princewang1994/TextSnake.pytorch.
TextSnake: `A Flexible Representation for Detecting Text of Arbitrary
Shapes <https://arxiv.org/abs/1807.01544>`_.
Args:
ohem_ratio (float): The negative/positive ratio in ohem.
downsample_ratio (float): Downsample ratio. Defaults to 1.0. TODO:
remove it.
orientation_thr (float): The threshold for distinguishing between
head edge and tail edge among the horizontal and vertical edges
of a quadrangle.
resample_step (float): The step of resampling.
center_region_shrink_ratio (float): The shrink ratio of text center.
loss_text (dict): The loss config used to calculate the text loss.
loss_center (dict): The loss config used to calculate the center loss.
loss_radius (dict): The loss config used to calculate the radius loss.
loss_sin (dict): The loss config used to calculate the sin loss.
loss_cos (dict): The loss config used to calculate the cos loss.
"""
def __init__(
self,
ohem_ratio: float = 3.0,
downsample_ratio: float = 1.0,
orientation_thr: float = 2.0,
resample_step: float = 4.0,
center_region_shrink_ratio: float = 0.3,
loss_text: Dict = dict(
type='MaskedBalancedBCEWithLogitsLoss',
fallback_negative_num=100,
eps=1e-5),
loss_center: Dict = dict(type='MaskedBCEWithLogitsLoss'),
loss_radius: Dict = dict(type='MaskedSmoothL1Loss'),
loss_sin: Dict = dict(type='MaskedSmoothL1Loss'),
loss_cos: Dict = dict(type='MaskedSmoothL1Loss')
) -> None:
super().__init__()
self.ohem_ratio = ohem_ratio
self.downsample_ratio = downsample_ratio
self.orientation_thr = orientation_thr
self.resample_step = resample_step
self.center_region_shrink_ratio = center_region_shrink_ratio
self.eps = 1e-8
self.loss_text = MODELS.build(loss_text)
self.loss_center = MODELS.build(loss_center)
self.loss_radius = MODELS.build(loss_radius)
self.loss_sin = MODELS.build(loss_sin)
self.loss_cos = MODELS.build(loss_cos)
def _batch_pad(self, masks: List[ndarray],
target_sz: Tuple[int, int]) -> ndarray:
"""Pad the masks to the right and bottom side to the target size and
pack them into a batch.
Args:
mask (list[ndarray]): The masks to be padded.
target_sz (tuple(int, int)): The target tensor of size
:math:`(H, W)`.
Returns:
ndarray: A batch of padded mask.
"""
batch = []
for mask in masks:
# H x W
mask_sz = mask.shape
# left, top, right, bottom
padding = (0, 0, target_sz[1] - mask_sz[1],
target_sz[0] - mask_sz[0])
padded_mask = impad(
mask, padding=padding, padding_mode='constant', pad_val=0)
batch.append(np.expand_dims(padded_mask, axis=0))
return np.concatenate(batch)
def forward(self, preds: Tensor,
data_samples: Sequence[TextDetDataSample]) -> Dict:
"""
Args:
preds (Tensor): The prediction map of shape
:math:`(N, 5, H, W)`, where each dimension is the map of
"text_region", "center_region", "sin_map", "cos_map", and
"radius_map" respectively.
data_samples (list[TextDetDataSample]): The data samples.
Returns:
dict: A loss dict with ``loss_text``, ``loss_center``,
``loss_radius``, ``loss_sin`` and ``loss_cos``.
"""
(gt_text_masks, gt_masks, gt_center_region_masks, gt_radius_maps,
gt_sin_maps, gt_cos_maps) = self.get_targets(data_samples)
pred_text_region = preds[:, 0, :, :]
pred_center_region = preds[:, 1, :, :]
pred_sin_map = preds[:, 2, :, :]
pred_cos_map = preds[:, 3, :, :]
pred_radius_map = preds[:, 4, :, :]
feature_sz = preds.size()
device = preds.device
mapping = {
'gt_text_masks': gt_text_masks,
'gt_center_region_masks': gt_center_region_masks,
'gt_masks': gt_masks,
'gt_radius_maps': gt_radius_maps,
'gt_sin_maps': gt_sin_maps,
'gt_cos_maps': gt_cos_maps
}
gt = {}
for key, value in mapping.items():
gt[key] = value
if abs(self.downsample_ratio - 1.0) < 1e-2:
gt[key] = self._batch_pad(gt[key], feature_sz[2:])
else:
gt[key] = [
imrescale(
mask,
scale=self.downsample_ratio,
interpolation='nearest') for mask in gt[key]
]
gt[key] = self._batch_pad(gt[key], feature_sz[2:])
if key == 'gt_radius_maps':
gt[key] *= self.downsample_ratio
gt[key] = torch.from_numpy(gt[key]).float().to(device)
scale = torch.sqrt(1.0 / (pred_sin_map**2 + pred_cos_map**2 + 1e-8))
pred_sin_map = pred_sin_map * scale
pred_cos_map = pred_cos_map * scale
loss_text = self.loss_text(pred_text_region, gt['gt_text_masks'],
gt['gt_masks'])
text_mask = (gt['gt_text_masks'] * gt['gt_masks']).float()
loss_center = self.loss_center(pred_center_region,
gt['gt_center_region_masks'], text_mask)
center_mask = (gt['gt_center_region_masks'] * gt['gt_masks']).float()
map_sz = pred_radius_map.size()
ones = torch.ones(map_sz, dtype=torch.float, device=device)
loss_radius = self.loss_radius(
pred_radius_map / (gt['gt_radius_maps'] + 1e-2), ones, center_mask)
loss_sin = self.loss_sin(pred_sin_map, gt['gt_sin_maps'], center_mask)
loss_cos = self.loss_cos(pred_cos_map, gt['gt_cos_maps'], center_mask)
results = dict(
loss_text=loss_text,
loss_center=loss_center,
loss_radius=loss_radius,
loss_sin=loss_sin,
loss_cos=loss_cos)
return results
def get_targets(self, data_samples: List[TextDetDataSample]) -> Tuple:
"""Generate loss targets from data samples.
Args:
data_samples (list(TextDetDataSample)): Ground truth data samples.
Returns:
tuple(gt_text_masks, gt_masks, gt_center_region_masks,
gt_radius_maps, gt_sin_maps, gt_cos_maps):
A tuple of six lists of ndarrays as the targets.
"""
return multi_apply(self._get_target_single, data_samples)
def _get_target_single(self, data_sample: TextDetDataSample) -> Tuple:
"""Generate loss target from a data sample.
Args:
data_sample (TextDetDataSample): The data sample.
Returns:
tuple(gt_text_mask, gt_mask, gt_center_region_mask, gt_radius_map,
gt_sin_map, gt_cos_map):
A tuple of six ndarrays as the targets of one prediction.
"""
gt_instances = data_sample.gt_instances
ignore_flags = gt_instances.ignored
polygons = gt_instances[~ignore_flags].polygons
ignored_polygons = gt_instances[ignore_flags].polygons
gt_text_mask = self._generate_text_region_mask(data_sample.img_shape,
polygons)
gt_mask = self._generate_effective_mask(data_sample.img_shape,
ignored_polygons)
(gt_center_region_mask, gt_radius_map, gt_sin_map,
gt_cos_map) = self._generate_center_mask_attrib_maps(
data_sample.img_shape, polygons)
return (gt_text_mask, gt_mask, gt_center_region_mask, gt_radius_map,
gt_sin_map, gt_cos_map)
def _generate_text_region_mask(self, img_size: Tuple[int, int],
text_polys: List[ndarray]) -> ndarray:
"""Generate text center region mask and geometry attribute maps.
Args:
img_size (tuple): The image size (height, width).
text_polys (list[ndarray]): The list of text polygons.
Returns:
text_region_mask (ndarray): The text region mask.
"""
assert isinstance(img_size, tuple)
text_region_mask = np.zeros(img_size, dtype=np.uint8)
for poly in text_polys:
polygon = np.array(poly, dtype=np.int32).reshape((1, -1, 2))
cv2.fillPoly(text_region_mask, polygon, 1)
return text_region_mask
def _generate_center_mask_attrib_maps(
self, img_size: Tuple[int, int], text_polys: List[ndarray]
) -> Tuple[ndarray, ndarray, ndarray, ndarray]:
"""Generate text center region mask and geometric attribute maps.
Args:
img_size (tuple(int, int)): The image size of (height, width).
text_polys (list[ndarray]): The list of text polygons.
Returns:
Tuple(center_region_mask, radius_map, sin_map, cos_map):
- center_region_mask (ndarray): The text center region mask.
- radius_map (ndarray): The distance map from each pixel in text
center region to top sideline.
- sin_map (ndarray): The sin(theta) map where theta is the angle
between vector (top point - bottom point) and vector (1, 0).
- cos_map (ndarray): The cos(theta) map where theta is the angle
between vector (top point - bottom point) and vector (1, 0).
"""
assert isinstance(img_size, tuple)
center_region_mask = np.zeros(img_size, np.uint8)
radius_map = np.zeros(img_size, dtype=np.float32)
sin_map = np.zeros(img_size, dtype=np.float32)
cos_map = np.zeros(img_size, dtype=np.float32)
for poly in text_polys:
polygon_points = np.array(poly).reshape(-1, 2)
n = len(polygon_points)
keep_inds = []
for i in range(n):
if norm(polygon_points[i] -
polygon_points[(i + 1) % n]) > 1e-5:
keep_inds.append(i)
polygon_points = polygon_points[keep_inds]
_, _, top_line, bot_line = self._reorder_poly_edge(polygon_points)
resampled_top_line, resampled_bot_line = self._resample_sidelines(
top_line, bot_line, self.resample_step)
resampled_bot_line = resampled_bot_line[::-1]
center_line = (resampled_top_line + resampled_bot_line) / 2
if self.vector_slope(center_line[-1] - center_line[0]) > 0.9:
if (center_line[-1] - center_line[0])[1] < 0:
center_line = center_line[::-1]
resampled_top_line = resampled_top_line[::-1]
resampled_bot_line = resampled_bot_line[::-1]
else:
if (center_line[-1] - center_line[0])[0] < 0:
center_line = center_line[::-1]
resampled_top_line = resampled_top_line[::-1]
resampled_bot_line = resampled_bot_line[::-1]
line_head_shrink_len = norm(resampled_top_line[0] -
resampled_bot_line[0]) / 4.0
line_tail_shrink_len = norm(resampled_top_line[-1] -
resampled_bot_line[-1]) / 4.0
head_shrink_num = int(line_head_shrink_len // self.resample_step)
tail_shrink_num = int(line_tail_shrink_len // self.resample_step)
if len(center_line) > head_shrink_num + tail_shrink_num + 2:
center_line = center_line[head_shrink_num:len(center_line) -
tail_shrink_num]
resampled_top_line = resampled_top_line[
head_shrink_num:len(resampled_top_line) - tail_shrink_num]
resampled_bot_line = resampled_bot_line[
head_shrink_num:len(resampled_bot_line) - tail_shrink_num]
self._draw_center_region_maps(resampled_top_line,
resampled_bot_line, center_line,
center_region_mask, radius_map,
sin_map, cos_map,
self.center_region_shrink_ratio)
return center_region_mask, radius_map, sin_map, cos_map
def _reorder_poly_edge(self, points: ndarray
) -> Tuple[ndarray, ndarray, ndarray, ndarray]:
"""Get the respective points composing head edge, tail edge, top
sideline and bottom sideline.
Args:
points (ndarray): The points composing a text polygon.
Returns:
Tuple(center_region_mask, radius_map, sin_map, cos_map):
- head_edge (ndarray): The two points composing the head edge of
text polygon.
- tail_edge (ndarray): The two points composing the tail edge of
text polygon.
- top_sideline (ndarray): The points composing top curved sideline
of text polygon.
- bot_sideline (ndarray): The points composing bottom curved
sideline of text polygon.
"""
assert points.ndim == 2
assert points.shape[0] >= 4
assert points.shape[1] == 2
head_inds, tail_inds = self._find_head_tail(points,
self.orientation_thr)
head_edge, tail_edge = points[head_inds], points[tail_inds]
pad_points = np.vstack([points, points])
if tail_inds[1] < 1:
tail_inds[1] = len(points)
sideline1 = pad_points[head_inds[1]:tail_inds[1]]
sideline2 = pad_points[tail_inds[1]:(head_inds[1] + len(points))]
sideline_mean_shift = np.mean(
sideline1, axis=0) - np.mean(
sideline2, axis=0)
if sideline_mean_shift[1] > 0:
top_sideline, bot_sideline = sideline2, sideline1
else:
top_sideline, bot_sideline = sideline1, sideline2
return head_edge, tail_edge, top_sideline, bot_sideline
def _find_head_tail(self, points: ndarray,
orientation_thr: float) -> Tuple[List[int], List[int]]:
"""Find the head edge and tail edge of a text polygon.
Args:
points (ndarray): The points composing a text polygon.
orientation_thr (float): The threshold for distinguishing between
head edge and tail edge among the horizontal and vertical edges
of a quadrangle.
Returns:
Tuple(head_inds, tail_inds):
- head_inds (list[int]): The indexes of two points composing head
edge.
- tail_inds (list[int]): The indexes of two points composing tail
edge.
"""
assert points.ndim == 2
assert points.shape[0] >= 4
assert points.shape[1] == 2
assert isinstance(orientation_thr, float)
if len(points) > 4:
pad_points = np.vstack([points, points[0]])
edge_vec = pad_points[1:] - pad_points[:-1]
theta_sum = []
adjacent_vec_theta = []
for i, edge_vec1 in enumerate(edge_vec):
adjacent_ind = [x % len(edge_vec) for x in [i - 1, i + 1]]
adjacent_edge_vec = edge_vec[adjacent_ind]
temp_theta_sum = np.sum(
self.vector_angle(edge_vec1, adjacent_edge_vec))
temp_adjacent_theta = self.vector_angle(
adjacent_edge_vec[0], adjacent_edge_vec[1])
theta_sum.append(temp_theta_sum)
adjacent_vec_theta.append(temp_adjacent_theta)
theta_sum_score = np.array(theta_sum) / np.pi
adjacent_theta_score = np.array(adjacent_vec_theta) / np.pi
poly_center = np.mean(points, axis=0)
edge_dist = np.maximum(
norm(pad_points[1:] - poly_center, axis=-1),
norm(pad_points[:-1] - poly_center, axis=-1))
dist_score = edge_dist / (np.max(edge_dist) + self.eps)
position_score = np.zeros(len(edge_vec))
score = 0.5 * theta_sum_score + 0.15 * adjacent_theta_score
score += 0.35 * dist_score
if len(points) % 2 == 0:
position_score[(len(score) // 2 - 1)] += 1
position_score[-1] += 1
score += 0.1 * position_score
pad_score = np.concatenate([score, score])
score_matrix = np.zeros((len(score), len(score) - 3))
x = np.arange(len(score) - 3) / float(len(score) - 4)
gaussian = 1. / (np.sqrt(2. * np.pi) * 0.5) * np.exp(-np.power(
(x - 0.5) / 0.5, 2.) / 2)
gaussian = gaussian / np.max(gaussian)
for i in range(len(score)):
score_matrix[i, :] = score[i] + pad_score[
(i + 2):(i + len(score) - 1)] * gaussian * 0.3
head_start, tail_increment = np.unravel_index(
score_matrix.argmax(), score_matrix.shape)
tail_start = (head_start + tail_increment + 2) % len(points)
head_end = (head_start + 1) % len(points)
tail_end = (tail_start + 1) % len(points)
if head_end > tail_end:
head_start, tail_start = tail_start, head_start
head_end, tail_end = tail_end, head_end
head_inds = [head_start, head_end]
tail_inds = [tail_start, tail_end]
else:
if self.vector_slope(points[1] - points[0]) + self.vector_slope(
points[3] - points[2]) < self.vector_slope(
points[2] - points[1]) + self.vector_slope(points[0] -
points[3]):
horizontal_edge_inds = [[0, 1], [2, 3]]
vertical_edge_inds = [[3, 0], [1, 2]]
else:
horizontal_edge_inds = [[3, 0], [1, 2]]
vertical_edge_inds = [[0, 1], [2, 3]]
vertical_len_sum = norm(points[vertical_edge_inds[0][0]] -
points[vertical_edge_inds[0][1]]) + norm(
points[vertical_edge_inds[1][0]] -
points[vertical_edge_inds[1][1]])
horizontal_len_sum = norm(
points[horizontal_edge_inds[0][0]] -
points[horizontal_edge_inds[0][1]]) + norm(
points[horizontal_edge_inds[1][0]] -
points[horizontal_edge_inds[1][1]])
if vertical_len_sum > horizontal_len_sum * orientation_thr:
head_inds = horizontal_edge_inds[0]
tail_inds = horizontal_edge_inds[1]
else:
head_inds = vertical_edge_inds[0]
tail_inds = vertical_edge_inds[1]
return head_inds, tail_inds
def _resample_line(self, line: ndarray, n: int) -> ndarray:
"""Resample n points on a line.
Args:
line (ndarray): The points composing a line.
n (int): The resampled points number.
Returns:
resampled_line (ndarray): The points composing the resampled line.
"""
assert line.ndim == 2
assert line.shape[0] >= 2
assert line.shape[1] == 2
assert isinstance(n, int)
assert n > 2
edges_length, total_length = self._cal_curve_length(line)
t_org = np.insert(np.cumsum(edges_length), 0, 0)
unit_t = total_length / (n - 1)
t_equidistant = np.arange(1, n - 1, dtype=np.float32) * unit_t
edge_ind = 0
points = [line[0]]
for t in t_equidistant:
while edge_ind < len(edges_length) - 1 and t > t_org[edge_ind + 1]:
edge_ind += 1
t_l, t_r = t_org[edge_ind], t_org[edge_ind + 1]
weight = np.array([t_r - t, t - t_l], dtype=np.float32) / (
t_r - t_l + self.eps)
p_coords = np.dot(weight, line[[edge_ind, edge_ind + 1]])
points.append(p_coords)
points.append(line[-1])
resampled_line = np.vstack(points)
return resampled_line
def _resample_sidelines(self, sideline1: ndarray, sideline2: ndarray,
resample_step: float) -> Tuple[ndarray, ndarray]:
"""Resample two sidelines to be of the same points number according to
step size.
Args:
sideline1 (ndarray): The points composing a sideline of a text
polygon.
sideline2 (ndarray): The points composing another sideline of a
text polygon.
resample_step (float): The resampled step size.
Returns:
Tuple(resampled_line1, resampled_line2):
- resampled_line1 (ndarray): The resampled line 1.
- resampled_line2 (ndarray): The resampled line 2.
"""
assert sideline1.ndim == sideline2.ndim == 2
assert sideline1.shape[1] == sideline2.shape[1] == 2
assert sideline1.shape[0] >= 2
assert sideline2.shape[0] >= 2
assert isinstance(resample_step, float)
_, length1 = self._cal_curve_length(sideline1)
_, length2 = self._cal_curve_length(sideline2)
avg_length = (length1 + length2) / 2
resample_point_num = max(int(float(avg_length) / resample_step) + 1, 3)
resampled_line1 = self._resample_line(sideline1, resample_point_num)
resampled_line2 = self._resample_line(sideline2, resample_point_num)
return resampled_line1, resampled_line2
def _cal_curve_length(self, line: ndarray) -> Tuple[ndarray, float]:
"""Calculate the length of each edge on the discrete curve and the sum.
Args:
line (ndarray): The points composing a discrete curve.
Returns:
Tuple(edges_length, total_length):
- edge_length (ndarray): The length of each edge on the
discrete curve.
- total_length (float): The total length of the discrete
curve.
"""
assert line.ndim == 2
assert len(line) >= 2
edges_length = np.sqrt((line[1:, 0] - line[:-1, 0])**2 +
(line[1:, 1] - line[:-1, 1])**2)
total_length = np.sum(edges_length)
return edges_length, total_length
def _draw_center_region_maps(self, top_line: ndarray, bot_line: ndarray,
center_line: ndarray,
center_region_mask: ndarray,
radius_map: ndarray, sin_map: ndarray,
cos_map: ndarray,
region_shrink_ratio: float) -> None:
"""Draw attributes on text center region.
Args:
top_line (ndarray): The points composing top curved sideline of
text polygon.
bot_line (ndarray): The points composing bottom curved sideline
of text polygon.
center_line (ndarray): The points composing the center line of text
instance.
center_region_mask (ndarray): The text center region mask.
radius_map (ndarray): The map where the distance from point to
sidelines will be drawn on for each pixel in text center
region.
sin_map (ndarray): The map where vector_sin(theta) will be drawn
on text center regions. Theta is the angle between tangent
line and vector (1, 0).
cos_map (ndarray): The map where vector_cos(theta) will be drawn on
text center regions. Theta is the angle between tangent line
and vector (1, 0).
region_shrink_ratio (float): The shrink ratio of text center.
"""
assert top_line.shape == bot_line.shape == center_line.shape
assert (center_region_mask.shape == radius_map.shape == sin_map.shape
== cos_map.shape)
assert isinstance(region_shrink_ratio, float)
for i in range(0, len(center_line) - 1):
top_mid_point = (top_line[i] + top_line[i + 1]) / 2
bot_mid_point = (bot_line[i] + bot_line[i + 1]) / 2
radius = norm(top_mid_point - bot_mid_point) / 2
text_direction = center_line[i + 1] - center_line[i]
sin_theta = self.vector_sin(text_direction)
cos_theta = self.vector_cos(text_direction)
tl = center_line[i] + (top_line[i] -
center_line[i]) * region_shrink_ratio
tr = center_line[i + 1] + (
top_line[i + 1] - center_line[i + 1]) * region_shrink_ratio
br = center_line[i + 1] + (
bot_line[i + 1] - center_line[i + 1]) * region_shrink_ratio
bl = center_line[i] + (bot_line[i] -
center_line[i]) * region_shrink_ratio
current_center_box = np.vstack([tl, tr, br, bl]).astype(np.int32)
cv2.fillPoly(center_region_mask, [current_center_box], color=1)
cv2.fillPoly(sin_map, [current_center_box], color=sin_theta)
cv2.fillPoly(cos_map, [current_center_box], color=cos_theta)
cv2.fillPoly(radius_map, [current_center_box], color=radius)
def vector_angle(self, vec1: ndarray, vec2: ndarray) -> ndarray:
"""Compute the angle between two vectors."""
if vec1.ndim > 1:
unit_vec1 = vec1 / (norm(vec1, axis=-1) + self.eps).reshape(
(-1, 1))
else:
unit_vec1 = vec1 / (norm(vec1, axis=-1) + self.eps)
if vec2.ndim > 1:
unit_vec2 = vec2 / (norm(vec2, axis=-1) + self.eps).reshape(
(-1, 1))
else:
unit_vec2 = vec2 / (norm(vec2, axis=-1) + self.eps)
return np.arccos(
np.clip(np.sum(unit_vec1 * unit_vec2, axis=-1), -1.0, 1.0))
def vector_slope(self, vec: ndarray) -> float:
"""Compute the slope of a vector."""
assert len(vec) == 2
return abs(vec[1] / (vec[0] + self.eps))
def vector_sin(self, vec: ndarray) -> float:
"""Compute the sin of the angle between vector and x-axis."""
assert len(vec) == 2
return vec[1] / (norm(vec) + self.eps)
def vector_cos(self, vec: ndarray) -> float:
"""Compute the cos of the angle between vector and x-axis."""
assert len(vec) == 2
return vec[0] / (norm(vec) + self.eps)
|