File size: 22,509 Bytes
9bf4bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Dict, List, Optional, Sequence, Union

import torch
import torch.nn as nn
import torch.nn.functional as F

from mmocr.models.common.dictionary import Dictionary
from mmocr.registry import MODELS
from mmocr.structures import TextRecogDataSample
from .base import BaseDecoder


@MODELS.register_module()
class ParallelSARDecoder(BaseDecoder):
    """Implementation Parallel Decoder module in `SAR.

    <https://arxiv.org/abs/1811.00751>`_.

    Args:
        dictionary (dict or :obj:`Dictionary`): The config for `Dictionary` or
            the instance of `Dictionary`.
        module_loss (dict, optional): Config to build module_loss. Defaults
            to None.
        postprocessor (dict, optional): Config to build postprocessor.
            Defaults to None.
        enc_bi_rnn (bool): If True, use bidirectional RNN in encoder.
            Defaults to False.
        dec_bi_rnn (bool): If True, use bidirectional RNN in decoder.
            Defaults to False.
        dec_rnn_dropout (float): Dropout of RNN layer in decoder.
            Defaults to 0.0.
        dec_gru (bool): If True, use GRU, else LSTM in decoder. Defaults to
            False.
        d_model (int): Dim of channels from backbone :math:`D_i`. Defaults
            to 512.
        d_enc (int): Dim of encoder RNN layer :math:`D_m`. Defaults to 512.
        d_k (int): Dim of channels of attention module. Defaults to 64.
        pred_dropout (float): Dropout probability of prediction layer. Defaults
            to 0.0.
        max_seq_len (int): Maximum sequence length for decoding. Defaults to
            30.
        mask (bool): If True, mask padding in feature map. Defaults to True.
        pred_concat (bool): If True, concat glimpse feature from
            attention with holistic feature and hidden state. Defaults to
            False.
        init_cfg (dict or list[dict], optional): Initialization configs.
            Defaults to None.
    """

    def __init__(self,
                 dictionary: Union[Dict, Dictionary],
                 module_loss: Optional[Dict] = None,
                 postprocessor: Optional[Dict] = None,
                 enc_bi_rnn: bool = False,
                 dec_bi_rnn: bool = False,
                 dec_rnn_dropout: Union[int, float] = 0.0,
                 dec_gru: bool = False,
                 d_model: int = 512,
                 d_enc: int = 512,
                 d_k: int = 64,
                 pred_dropout: float = 0.0,
                 max_seq_len: int = 30,
                 mask: bool = True,
                 pred_concat: bool = False,
                 init_cfg: Optional[Union[Dict, List[Dict]]] = None,
                 **kwargs) -> None:
        super().__init__(
            dictionary=dictionary,
            module_loss=module_loss,
            max_seq_len=max_seq_len,
            postprocessor=postprocessor,
            init_cfg=init_cfg)

        self.num_classes = self.dictionary.num_classes
        self.enc_bi_rnn = enc_bi_rnn
        self.d_k = d_k
        self.start_idx = self.dictionary.start_idx
        self.mask = mask
        self.pred_concat = pred_concat

        encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1)
        decoder_rnn_out_size = encoder_rnn_out_size * (int(dec_bi_rnn) + 1)
        # 2D attention layer
        self.conv1x1_1 = nn.Linear(decoder_rnn_out_size, d_k)
        self.conv3x3_1 = nn.Conv2d(
            d_model, d_k, kernel_size=3, stride=1, padding=1)
        self.conv1x1_2 = nn.Linear(d_k, 1)

        # Decoder RNN layer
        kwargs = dict(
            input_size=encoder_rnn_out_size,
            hidden_size=encoder_rnn_out_size,
            num_layers=2,
            batch_first=True,
            dropout=dec_rnn_dropout,
            bidirectional=dec_bi_rnn)
        if dec_gru:
            self.rnn_decoder = nn.GRU(**kwargs)
        else:
            self.rnn_decoder = nn.LSTM(**kwargs)

        # Decoder input embedding
        self.embedding = nn.Embedding(
            self.num_classes,
            encoder_rnn_out_size,
            padding_idx=self.dictionary.padding_idx)

        # Prediction layer
        self.pred_dropout = nn.Dropout(pred_dropout)
        if pred_concat:
            fc_in_channel = decoder_rnn_out_size + d_model + \
                            encoder_rnn_out_size
        else:
            fc_in_channel = d_model
        self.prediction = nn.Linear(fc_in_channel, self.num_classes)
        self.softmax = nn.Softmax(dim=-1)

    def _2d_attention(self,
                      decoder_input: torch.Tensor,
                      feat: torch.Tensor,
                      holistic_feat: torch.Tensor,
                      valid_ratios: Optional[Sequence[float]] = None
                      ) -> torch.Tensor:
        """2D attention layer.

        Args:
            decoder_input (torch.Tensor): Input of decoder RNN.
            feat (torch.Tensor): Feature map of encoder.
            holistic_feat (torch.Tensor): Feature map of holistic encoder.
            valid_ratios (Sequence[float]): Valid ratios of attention.
                Defaults to None.

        Returns:
            torch.Tensor: Output of 2D attention layer.
        """
        y = self.rnn_decoder(decoder_input)[0]
        # y: bsz * (seq_len + 1) * hidden_size

        attn_query = self.conv1x1_1(y)  # bsz * (seq_len + 1) * attn_size
        bsz, seq_len, attn_size = attn_query.size()
        attn_query = attn_query.view(bsz, seq_len, attn_size, 1, 1)

        attn_key = self.conv3x3_1(feat)
        # bsz * attn_size * h * w
        attn_key = attn_key.unsqueeze(1)
        # bsz * 1 * attn_size * h * w

        attn_weight = torch.tanh(torch.add(attn_key, attn_query, alpha=1))
        # bsz * (seq_len + 1) * attn_size * h * w
        attn_weight = attn_weight.permute(0, 1, 3, 4, 2).contiguous()
        # bsz * (seq_len + 1) * h * w * attn_size
        attn_weight = self.conv1x1_2(attn_weight)
        # bsz * (seq_len + 1) * h * w * 1
        bsz, T, h, w, c = attn_weight.size()
        assert c == 1

        if valid_ratios is not None:
            # cal mask of attention weight
            attn_mask = torch.zeros_like(attn_weight)
            for i, valid_ratio in enumerate(valid_ratios):
                valid_width = min(w, math.ceil(w * valid_ratio))
                attn_mask[i, :, :, valid_width:, :] = 1
            attn_weight = attn_weight.masked_fill(attn_mask.bool(),
                                                  float('-inf'))

        attn_weight = attn_weight.view(bsz, T, -1)
        attn_weight = F.softmax(attn_weight, dim=-1)
        attn_weight = attn_weight.view(bsz, T, h, w,
                                       c).permute(0, 1, 4, 2, 3).contiguous()

        attn_feat = torch.sum(
            torch.mul(feat.unsqueeze(1), attn_weight), (3, 4), keepdim=False)
        # bsz * (seq_len + 1) * C

        # linear transformation
        if self.pred_concat:
            hf_c = holistic_feat.size(-1)
            holistic_feat = holistic_feat.expand(bsz, seq_len, hf_c)
            y = self.prediction(torch.cat((y, attn_feat, holistic_feat), 2))
        else:
            y = self.prediction(attn_feat)
        # bsz * (seq_len + 1) * num_classes
        y = self.pred_dropout(y)

        return y

    def forward_train(self, feat: torch.Tensor, out_enc: torch.Tensor,
                      data_samples: Sequence[TextRecogDataSample]
                      ) -> torch.Tensor:
        """
        Args:
            feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
            out_enc (Tensor): Encoder output of shape
                :math:`(N, D_m, H, W)`.
            data_samples (list[TextRecogDataSample]): Batch of
                TextRecogDataSample, containing gt_text and valid_ratio
                information.

        Returns:
            Tensor: A raw logit tensor of shape :math:`(N, T, C)`.
        """
        if data_samples is not None:
            assert len(data_samples) == feat.size(0)

        valid_ratios = [
            img_meta.get('valid_ratio', 1.0) for img_meta in data_samples
        ] if self.mask else None

        padded_targets = [
            data_sample.gt_text.padded_indexes for data_sample in data_samples
        ]
        padded_targets = torch.stack(padded_targets, dim=0).to(feat.device)
        tgt_embedding = self.embedding(padded_targets)
        # bsz * seq_len * emb_dim
        out_enc = out_enc.unsqueeze(1)
        # bsz * 1 * emb_dim
        in_dec = torch.cat((out_enc, tgt_embedding), dim=1)
        # bsz * (seq_len + 1) * C
        out_dec = self._2d_attention(
            in_dec, feat, out_enc, valid_ratios=valid_ratios)
        # bsz * (seq_len + 1) * num_classes

        return out_dec[:, 1:, :]  # bsz * seq_len * num_classes

    def forward_test(
        self,
        feat: torch.Tensor,
        out_enc: torch.Tensor,
        data_samples: Optional[Sequence[TextRecogDataSample]] = None
    ) -> torch.Tensor:
        """
        Args:
            feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
            out_enc (Tensor): Encoder output of shape
                :math:`(N, D_m, H, W)`.
            data_samples (list[TextRecogDataSample], optional): Batch of
                TextRecogDataSample, containing valid_ratio
                information. Defaults to None.

        Returns:
            Tensor: Character probabilities. of shape
            :math:`(N, self.max_seq_len, C)` where :math:`C` is
            ``num_classes``.
        """
        if data_samples is not None:
            assert len(data_samples) == feat.size(0)

        valid_ratios = None
        if data_samples is not None:
            valid_ratios = [
                data_sample.get('valid_ratio', 1.0)
                for data_sample in data_samples
            ] if self.mask else None

        seq_len = self.max_seq_len

        bsz = feat.size(0)
        start_token = torch.full((bsz, ),
                                 self.start_idx,
                                 device=feat.device,
                                 dtype=torch.long)
        # bsz
        start_token = self.embedding(start_token)
        # bsz * emb_dim
        start_token = start_token.unsqueeze(1).expand(-1, seq_len, -1)
        # bsz * seq_len * emb_dim
        out_enc = out_enc.unsqueeze(1)
        # bsz * 1 * emb_dim
        decoder_input = torch.cat((out_enc, start_token), dim=1)
        # bsz * (seq_len + 1) * emb_dim

        outputs = []
        for i in range(1, seq_len + 1):
            decoder_output = self._2d_attention(
                decoder_input, feat, out_enc, valid_ratios=valid_ratios)
            char_output = decoder_output[:, i, :]  # bsz * num_classes
            outputs.append(char_output)
            _, max_idx = torch.max(char_output, dim=1, keepdim=False)
            char_embedding = self.embedding(max_idx)  # bsz * emb_dim
            if i < seq_len:
                decoder_input[:, i + 1, :] = char_embedding

        outputs = torch.stack(outputs, 1)  # bsz * seq_len * num_classes

        return self.softmax(outputs)


@MODELS.register_module()
class SequentialSARDecoder(BaseDecoder):
    """Implementation Sequential Decoder module in `SAR.

    <https://arxiv.org/abs/1811.00751>`_.

    Args:
        dictionary (dict or :obj:`Dictionary`): The config for `Dictionary` or
            the instance of `Dictionary`.
        module_loss (dict, optional): Config to build module_loss. Defaults
            to None.
        postprocessor (dict, optional): Config to build postprocessor.
            Defaults to None.
        enc_bi_rnn (bool): If True, use bidirectional RNN in encoder. Defaults
            to False.
        dec_bi_rnn (bool): If True, use bidirectional RNN in decoder. Defaults
            to False.
        dec_do_rnn (float): Dropout of RNN layer in decoder. Defaults to 0.
        dec_gru (bool): If True, use GRU, else LSTM in decoder. Defaults to
            False.
        d_k (int): Dim of conv layers in attention module. Defaults to 64.
        d_model (int): Dim of channels from backbone :math:`D_i`. Defaults to
            512.
        d_enc (int): Dim of encoder RNN layer :math:`D_m`. Defaults to 512.
        pred_dropout (float): Dropout probability of prediction layer. Defaults
            to 0.
        max_seq_len (int): Maximum sequence length during decoding. Defaults to
            40.
        mask (bool): If True, mask padding in feature map. Defaults to False.
        pred_concat (bool): If True, concat glimpse feature from
            attention with holistic feature and hidden state. Defaults to
            False.
        init_cfg (dict or list[dict], optional): Initialization configs.
            Defaults to None.
    """

    def __init__(self,
                 dictionary: Optional[Union[Dict, Dictionary]] = None,
                 module_loss: Optional[Dict] = None,
                 postprocessor: Optional[Dict] = None,
                 enc_bi_rnn: bool = False,
                 dec_bi_rnn: bool = False,
                 dec_gru: bool = False,
                 d_k: int = 64,
                 d_model: int = 512,
                 d_enc: int = 512,
                 pred_dropout: float = 0.0,
                 mask: bool = True,
                 max_seq_len: int = 40,
                 pred_concat: bool = False,
                 init_cfg: Optional[Union[Dict, List[Dict]]] = None,
                 **kwargs):
        super().__init__(
            dictionary=dictionary,
            module_loss=module_loss,
            postprocessor=postprocessor,
            max_seq_len=max_seq_len,
            init_cfg=init_cfg)

        self.num_classes = self.dictionary.num_classes
        self.enc_bi_rnn = enc_bi_rnn
        self.d_k = d_k
        self.start_idx = self.dictionary.start_idx
        self.dec_gru = dec_gru
        self.mask = mask
        self.pred_concat = pred_concat

        encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1)
        decoder_rnn_out_size = encoder_rnn_out_size * (int(dec_bi_rnn) + 1)
        # 2D attention layer
        self.conv1x1_1 = nn.Conv2d(
            decoder_rnn_out_size, d_k, kernel_size=1, stride=1)
        self.conv3x3_1 = nn.Conv2d(
            d_model, d_k, kernel_size=3, stride=1, padding=1)
        self.conv1x1_2 = nn.Conv2d(d_k, 1, kernel_size=1, stride=1)

        # Decoder rnn layer
        if dec_gru:
            self.rnn_decoder_layer1 = nn.GRUCell(encoder_rnn_out_size,
                                                 encoder_rnn_out_size)
            self.rnn_decoder_layer2 = nn.GRUCell(encoder_rnn_out_size,
                                                 encoder_rnn_out_size)
        else:
            self.rnn_decoder_layer1 = nn.LSTMCell(encoder_rnn_out_size,
                                                  encoder_rnn_out_size)
            self.rnn_decoder_layer2 = nn.LSTMCell(encoder_rnn_out_size,
                                                  encoder_rnn_out_size)

        # Decoder input embedding
        self.embedding = nn.Embedding(
            self.num_classes,
            encoder_rnn_out_size,
            padding_idx=self.dictionary.padding_idx)

        # Prediction layer
        self.pred_dropout = nn.Dropout(pred_dropout)
        if pred_concat:
            fc_in_channel = decoder_rnn_out_size + d_model + d_enc
        else:
            fc_in_channel = d_model
        self.prediction = nn.Linear(fc_in_channel, self.num_classes)
        self.softmax = nn.Softmax(dim=-1)

    def _2d_attention(self,
                      y_prev: torch.Tensor,
                      feat: torch.Tensor,
                      holistic_feat: torch.Tensor,
                      hx1: torch.Tensor,
                      cx1: torch.Tensor,
                      hx2: torch.Tensor,
                      cx2: torch.Tensor,
                      valid_ratios: Optional[Sequence[float]] = None
                      ) -> torch.Tensor:
        """2D attention layer.

        Args:
            y_prev (torch.Tensor): Previous decoder hidden state.
            feat (torch.Tensor): Feature map.
            holistic_feat (torch.Tensor): Holistic feature map.
            hx1 (torch.Tensor): rnn decoder layer 1 hidden state.
            cx1 (torch.Tensor): rnn decoder layer 1 cell state.
            hx2 (torch.Tensor): rnn decoder layer 2 hidden state.
            cx2 (torch.Tensor): rnn decoder layer 2 cell state.
            valid_ratios (Optional[Sequence[float]]): Valid ratios of
                attention. Defaults to None.
        """
        _, _, h_feat, w_feat = feat.size()
        if self.dec_gru:
            hx1 = cx1 = self.rnn_decoder_layer1(y_prev, hx1)
            hx2 = cx2 = self.rnn_decoder_layer2(hx1, hx2)
        else:
            hx1, cx1 = self.rnn_decoder_layer1(y_prev, (hx1, cx1))
            hx2, cx2 = self.rnn_decoder_layer2(hx1, (hx2, cx2))

        tile_hx2 = hx2.view(hx2.size(0), hx2.size(1), 1, 1)
        attn_query = self.conv1x1_1(tile_hx2)  # bsz * attn_size * 1 * 1
        attn_query = attn_query.expand(-1, -1, h_feat, w_feat)
        attn_key = self.conv3x3_1(feat)
        attn_weight = torch.tanh(torch.add(attn_key, attn_query, alpha=1))
        attn_weight = self.conv1x1_2(attn_weight)
        bsz, c, h, w = attn_weight.size()
        assert c == 1

        if valid_ratios is not None:
            # cal mask of attention weight
            attn_mask = torch.zeros_like(attn_weight)
            for i, valid_ratio in enumerate(valid_ratios):
                valid_width = min(w, math.ceil(w * valid_ratio))
                attn_mask[i, :, :, valid_width:] = 1
            attn_weight = attn_weight.masked_fill(attn_mask.bool(),
                                                  float('-inf'))

        attn_weight = F.softmax(attn_weight.view(bsz, -1), dim=-1)
        attn_weight = attn_weight.view(bsz, c, h, w)

        attn_feat = torch.sum(
            torch.mul(feat, attn_weight), (2, 3), keepdim=False)  # n * c

        # linear transformation
        if self.pred_concat:
            y = self.prediction(torch.cat((hx2, attn_feat, holistic_feat), 1))
        else:
            y = self.prediction(attn_feat)

        return y, hx1, hx1, hx2, hx2

    def forward_train(
        self,
        feat: torch.Tensor,
        out_enc: torch.Tensor,
        data_samples: Optional[Sequence[TextRecogDataSample]] = None
    ) -> torch.Tensor:
        """
        Args:
            feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
            out_enc (Tensor): Encoder output of shape
                :math:`(N, D_m, H, W)`.
            data_samples (list[TextRecogDataSample]): Batch of
                TextRecogDataSample, containing gt_text and valid_ratio
                information.

        Returns:
            Tensor: A raw logit tensor of shape :math:`(N, T, C)`.
        """
        valid_ratios = None
        if data_samples is not None:
            valid_ratios = [
                data_sample.get('valid_ratio', 1.0)
                for data_sample in data_samples
            ] if self.mask else None

        padded_targets = [
            data_sample.gt_text.padded_indexes for data_sample in data_samples
        ]
        padded_targets = torch.stack(padded_targets, dim=0).to(feat.device)
        tgt_embedding = self.embedding(padded_targets)

        outputs = []
        for i in range(-1, self.max_seq_len):
            if i == -1:
                if self.dec_gru:
                    hx1 = cx1 = self.rnn_decoder_layer1(out_enc)
                    hx2 = cx2 = self.rnn_decoder_layer2(hx1)
                else:
                    hx1, cx1 = self.rnn_decoder_layer1(out_enc)
                    hx2, cx2 = self.rnn_decoder_layer2(hx1)
            else:
                y_prev = tgt_embedding[:, i, :]
                y, hx1, cx1, hx2, cx2 = self._2d_attention(
                    y_prev,
                    feat,
                    out_enc,
                    hx1,
                    cx1,
                    hx2,
                    cx2,
                    valid_ratios=valid_ratios)
                y = self.pred_dropout(y)

                outputs.append(y)

        outputs = torch.stack(outputs, 1)

        return outputs

    def forward_test(
        self,
        feat: torch.Tensor,
        out_enc: torch.Tensor,
        data_samples: Optional[Sequence[TextRecogDataSample]] = None
    ) -> torch.Tensor:
        """
        Args:
            feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`.
            out_enc (Tensor): Encoder output of shape
                :math:`(N, D_m, H, W)`.
            data_samples (list[TextRecogDataSample]): Batch of
                TextRecogDataSample, containing valid_ratio
                information.

        Returns:
            Tensor: Character probabilities. of shape
            :math:`(N, self.max_seq_len, C)` where :math:`C` is
            ``num_classes``.
        """
        valid_ratios = None
        if data_samples is not None:
            valid_ratios = [
                data_sample.get('valid_ratio', 1.0)
                for data_sample in data_samples
            ] if self.mask else None

        outputs = []
        start_token = torch.full((feat.size(0), ),
                                 self.start_idx,
                                 device=feat.device,
                                 dtype=torch.long)
        start_token = self.embedding(start_token)
        for i in range(-1, self.max_seq_len):
            if i == -1:
                if self.dec_gru:
                    hx1 = cx1 = self.rnn_decoder_layer1(out_enc)
                    hx2 = cx2 = self.rnn_decoder_layer2(hx1)
                else:
                    hx1, cx1 = self.rnn_decoder_layer1(out_enc)
                    hx2, cx2 = self.rnn_decoder_layer2(hx1)
                    y_prev = start_token
            else:
                y, hx1, cx1, hx2, cx2 = self._2d_attention(
                    y_prev,
                    feat,
                    out_enc,
                    hx1,
                    cx1,
                    hx2,
                    cx2,
                    valid_ratios=valid_ratios)
                _, max_idx = torch.max(y, dim=1, keepdim=False)
                char_embedding = self.embedding(max_idx)
                y_prev = char_embedding
                outputs.append(y)

        outputs = torch.stack(outputs, 1)

        return self.softmax(outputs)