File size: 7,696 Bytes
9bf4bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import json
import math
import os.path as osp
from functools import partial

import mmcv
import mmengine
import numpy as np
from shapely.geometry import Polygon

from mmocr.utils import dump_ocr_data


def seg2bbox(seg):
    """Convert segmentation to bbox.

    Args:
        seg (list(int | float)): A set of coordinates
    """
    if len(seg) == 4:
        min_x = min(seg[0], seg[2], seg[4], seg[6])
        max_x = max(seg[0], seg[2], seg[4], seg[6])
        min_y = min(seg[1], seg[3], seg[5], seg[7])
        max_y = max(seg[1], seg[3], seg[5], seg[7])
    else:
        seg = np.array(seg).reshape(-1, 2)
        polygon = Polygon(seg)
        min_x, min_y, max_x, max_y = polygon.bounds
    bbox = [min_x, min_y, max_x - min_x, max_y - min_y]
    return bbox


def process_level(
    src_img,
    annotation,
    dst_image_root,
    ignore_image_root,
    preserve_vertical,
    split,
    para_idx,
    img_idx,
    line_idx,
    word_idx=None,
):
    vertices = annotation['vertices']
    text_label = annotation['text']
    segmentation = [i for j in vertices for i in j]
    x, y, w, h = seg2bbox(segmentation)
    x, y = max(0, math.floor(x)), max(0, math.floor(y))
    w, h = math.ceil(w), math.ceil(h)
    dst_img = src_img[y:y + h, x:x + w]
    if word_idx:
        dst_img_name = f'img_{img_idx}_{para_idx}_{line_idx}_{word_idx}.jpg'
    else:
        dst_img_name = f'img_{img_idx}_{para_idx}_{line_idx}.jpg'
    if not preserve_vertical and h / w > 2 and split == 'train':
        dst_img_path = osp.join(ignore_image_root, dst_img_name)
        mmcv.imwrite(dst_img, dst_img_path)
        return None

    dst_img_path = osp.join(dst_image_root, dst_img_name)
    mmcv.imwrite(dst_img, dst_img_path)

    label = {'file_name': dst_img_name, 'anno_info': [{'text': text_label}]}

    return label


def process_img(args, src_image_root, dst_image_root, ignore_image_root, level,
                preserve_vertical, split):
    # Dirty hack for multi-processing
    img_idx, img_annos = args
    src_img = mmcv.imread(
        osp.join(src_image_root, img_annos['image_id'] + '.jpg'))
    labels = []
    for para_idx, paragraph in enumerate(img_annos['paragraphs']):
        for line_idx, line in enumerate(paragraph['lines']):
            if level == 'line':
                # Ignore illegible words
                if line['legible']:

                    label = process_level(src_img, line, dst_image_root,
                                          ignore_image_root, preserve_vertical,
                                          split, para_idx, img_idx, line_idx)
                    if label is not None:
                        labels.append(label)
            elif level == 'word':
                for word_idx, word in enumerate(line['words']):
                    if not word['legible']:
                        continue
                    label = process_level(src_img, word, dst_image_root,
                                          ignore_image_root, preserve_vertical,
                                          split, para_idx, img_idx, line_idx,
                                          word_idx)
                    if label is not None:
                        labels.append(label)
    return labels


def convert_hiertext(
    root_path,
    split,
    level,
    preserve_vertical,
    nproc,
):
    """Collect the annotation information and crop the images.

    The annotation format is as the following:
    {
        "info": {
            "date": "release date",
            "version": "current version"
        },
        "annotations": [  // List of dictionaries, one for each image.
            {
            "image_id": "the filename of corresponding image.",
            "image_width": image_width,  // (int) The image width.
            "image_height": image_height, // (int) The image height.
            "paragraphs": [  // List of paragraphs.
                {
                "vertices": [[x1, y1], [x2, y2],...,[xn, yn]]
                "legible": true
                "lines": [
                    {
                    "vertices": [[x1, y1], [x2, y2],...,[x4, y4]]
                    "text": L
                    "legible": true,
                    "handwritten": false
                    "vertical": false,
                    "words": [
                        {
                        "vertices": [[x1, y1], [x2, y2],...,[xm, ym]]
                        "text": "the text content of this word",
                        "legible": true
                        "handwritten": false,
                        "vertical": false,
                        }, ...
                    ]
                    }, ...
                ]
                }, ...
            ]
            }, ...
        ]
        }

    Args:
        root_path (str): Root path to the dataset
        split (str): Dataset split, which should be 'train' or 'val'
        level (str): Crop word or line level instances
        preserve_vertical (bool): Whether to preserve vertical texts
        nproc (int): Number of processes

    Returns:
        img_info (dict): The dict of the img and annotation information
    """

    annotation_path = osp.join(root_path, 'annotations/' + split + '.jsonl')
    if not osp.exists(annotation_path):
        raise Exception(
            f'{annotation_path} not exists, please check and try again.')

    annotation = json.load(open(annotation_path))['annotations']
    # outputs
    dst_label_file = osp.join(root_path, f'{split}_label.json')
    dst_image_root = osp.join(root_path, 'crops', split)
    ignore_image_root = osp.join(root_path, 'ignores', split)
    src_image_root = osp.join(root_path, 'imgs', split)
    mmengine.mkdir_or_exist(dst_image_root)
    mmengine.mkdir_or_exist(ignore_image_root)

    process_img_with_path = partial(
        process_img,
        src_image_root=src_image_root,
        dst_image_root=dst_image_root,
        ignore_image_root=ignore_image_root,
        level=level,
        preserve_vertical=preserve_vertical,
        split=split)
    tasks = []
    for img_idx, img_info in enumerate(annotation):
        tasks.append((img_idx, img_info))
    labels_list = mmengine.track_parallel_progress(
        process_img_with_path, tasks, keep_order=True, nproc=nproc)

    final_labels = []
    for label_list in labels_list:
        final_labels += label_list

    dump_ocr_data(final_labels, dst_label_file, 'textrecog')


def parse_args():
    parser = argparse.ArgumentParser(
        description='Generate training and validation set of HierText')
    parser.add_argument('root_path', help='Root dir path of HierText')
    parser.add_argument(
        '--nproc', default=1, type=int, help='Number of processes')
    parser.add_argument(
        '--preserve-vertical',
        help='Preserve samples containing vertical texts',
        action='store_true')
    parser.add_argument(
        '--level',
        default='word',
        help='Crop word or line level instance',
        choices=['word', 'line'])
    args = parser.parse_args()
    return args


def main():
    args = parse_args()
    root_path = args.root_path
    print('Processing training set...')
    convert_hiertext(
        root_path=root_path,
        split='train',
        level=args.level,
        preserve_vertical=args.preserve_vertical,
        nproc=args.nproc)
    print('Processing validation set...')
    convert_hiertext(
        root_path=root_path,
        split='val',
        level=args.level,
        preserve_vertical=args.preserve_vertical,
        nproc=args.nproc)
    print('Finish')


if __name__ == '__main__':
    main()