Spaces:
Running
Running
File size: 7,696 Bytes
9bf4bd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import json
import math
import os.path as osp
from functools import partial
import mmcv
import mmengine
import numpy as np
from shapely.geometry import Polygon
from mmocr.utils import dump_ocr_data
def seg2bbox(seg):
"""Convert segmentation to bbox.
Args:
seg (list(int | float)): A set of coordinates
"""
if len(seg) == 4:
min_x = min(seg[0], seg[2], seg[4], seg[6])
max_x = max(seg[0], seg[2], seg[4], seg[6])
min_y = min(seg[1], seg[3], seg[5], seg[7])
max_y = max(seg[1], seg[3], seg[5], seg[7])
else:
seg = np.array(seg).reshape(-1, 2)
polygon = Polygon(seg)
min_x, min_y, max_x, max_y = polygon.bounds
bbox = [min_x, min_y, max_x - min_x, max_y - min_y]
return bbox
def process_level(
src_img,
annotation,
dst_image_root,
ignore_image_root,
preserve_vertical,
split,
para_idx,
img_idx,
line_idx,
word_idx=None,
):
vertices = annotation['vertices']
text_label = annotation['text']
segmentation = [i for j in vertices for i in j]
x, y, w, h = seg2bbox(segmentation)
x, y = max(0, math.floor(x)), max(0, math.floor(y))
w, h = math.ceil(w), math.ceil(h)
dst_img = src_img[y:y + h, x:x + w]
if word_idx:
dst_img_name = f'img_{img_idx}_{para_idx}_{line_idx}_{word_idx}.jpg'
else:
dst_img_name = f'img_{img_idx}_{para_idx}_{line_idx}.jpg'
if not preserve_vertical and h / w > 2 and split == 'train':
dst_img_path = osp.join(ignore_image_root, dst_img_name)
mmcv.imwrite(dst_img, dst_img_path)
return None
dst_img_path = osp.join(dst_image_root, dst_img_name)
mmcv.imwrite(dst_img, dst_img_path)
label = {'file_name': dst_img_name, 'anno_info': [{'text': text_label}]}
return label
def process_img(args, src_image_root, dst_image_root, ignore_image_root, level,
preserve_vertical, split):
# Dirty hack for multi-processing
img_idx, img_annos = args
src_img = mmcv.imread(
osp.join(src_image_root, img_annos['image_id'] + '.jpg'))
labels = []
for para_idx, paragraph in enumerate(img_annos['paragraphs']):
for line_idx, line in enumerate(paragraph['lines']):
if level == 'line':
# Ignore illegible words
if line['legible']:
label = process_level(src_img, line, dst_image_root,
ignore_image_root, preserve_vertical,
split, para_idx, img_idx, line_idx)
if label is not None:
labels.append(label)
elif level == 'word':
for word_idx, word in enumerate(line['words']):
if not word['legible']:
continue
label = process_level(src_img, word, dst_image_root,
ignore_image_root, preserve_vertical,
split, para_idx, img_idx, line_idx,
word_idx)
if label is not None:
labels.append(label)
return labels
def convert_hiertext(
root_path,
split,
level,
preserve_vertical,
nproc,
):
"""Collect the annotation information and crop the images.
The annotation format is as the following:
{
"info": {
"date": "release date",
"version": "current version"
},
"annotations": [ // List of dictionaries, one for each image.
{
"image_id": "the filename of corresponding image.",
"image_width": image_width, // (int) The image width.
"image_height": image_height, // (int) The image height.
"paragraphs": [ // List of paragraphs.
{
"vertices": [[x1, y1], [x2, y2],...,[xn, yn]]
"legible": true
"lines": [
{
"vertices": [[x1, y1], [x2, y2],...,[x4, y4]]
"text": L
"legible": true,
"handwritten": false
"vertical": false,
"words": [
{
"vertices": [[x1, y1], [x2, y2],...,[xm, ym]]
"text": "the text content of this word",
"legible": true
"handwritten": false,
"vertical": false,
}, ...
]
}, ...
]
}, ...
]
}, ...
]
}
Args:
root_path (str): Root path to the dataset
split (str): Dataset split, which should be 'train' or 'val'
level (str): Crop word or line level instances
preserve_vertical (bool): Whether to preserve vertical texts
nproc (int): Number of processes
Returns:
img_info (dict): The dict of the img and annotation information
"""
annotation_path = osp.join(root_path, 'annotations/' + split + '.jsonl')
if not osp.exists(annotation_path):
raise Exception(
f'{annotation_path} not exists, please check and try again.')
annotation = json.load(open(annotation_path))['annotations']
# outputs
dst_label_file = osp.join(root_path, f'{split}_label.json')
dst_image_root = osp.join(root_path, 'crops', split)
ignore_image_root = osp.join(root_path, 'ignores', split)
src_image_root = osp.join(root_path, 'imgs', split)
mmengine.mkdir_or_exist(dst_image_root)
mmengine.mkdir_or_exist(ignore_image_root)
process_img_with_path = partial(
process_img,
src_image_root=src_image_root,
dst_image_root=dst_image_root,
ignore_image_root=ignore_image_root,
level=level,
preserve_vertical=preserve_vertical,
split=split)
tasks = []
for img_idx, img_info in enumerate(annotation):
tasks.append((img_idx, img_info))
labels_list = mmengine.track_parallel_progress(
process_img_with_path, tasks, keep_order=True, nproc=nproc)
final_labels = []
for label_list in labels_list:
final_labels += label_list
dump_ocr_data(final_labels, dst_label_file, 'textrecog')
def parse_args():
parser = argparse.ArgumentParser(
description='Generate training and validation set of HierText')
parser.add_argument('root_path', help='Root dir path of HierText')
parser.add_argument(
'--nproc', default=1, type=int, help='Number of processes')
parser.add_argument(
'--preserve-vertical',
help='Preserve samples containing vertical texts',
action='store_true')
parser.add_argument(
'--level',
default='word',
help='Crop word or line level instance',
choices=['word', 'line'])
args = parser.parse_args()
return args
def main():
args = parse_args()
root_path = args.root_path
print('Processing training set...')
convert_hiertext(
root_path=root_path,
split='train',
level=args.level,
preserve_vertical=args.preserve_vertical,
nproc=args.nproc)
print('Processing validation set...')
convert_hiertext(
root_path=root_path,
split='val',
level=args.level,
preserve_vertical=args.preserve_vertical,
nproc=args.nproc)
print('Finish')
if __name__ == '__main__':
main()
|