Spaces:
Sleeping
Sleeping
File size: 15,562 Bytes
9bf4bd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
import sys
from typing import Optional, Tuple
import cv2
import mmcv
import numpy as np
from mmengine.config import Config, DictAction
from mmengine.dataset import Compose
from mmengine.registry import init_default_scope
from mmengine.utils import ProgressBar
from mmengine.visualization import Visualizer
from mmocr.registry import DATASETS, VISUALIZERS
# TODO: Support for printing the change in key of results
def parse_args():
parser = argparse.ArgumentParser(description='Browse a dataset')
parser.add_argument('config', help='Path to model or dataset config.')
parser.add_argument(
'--phase',
'-p',
default='train',
type=str,
help='Phase of dataset to visualize. Use "train", "test" or "val" if '
"you just want to visualize the default split. It's also possible to "
'be a dataset variable name, which might be useful when a dataset '
'split has multiple variants in the config.')
parser.add_argument(
'--mode',
'-m',
default='transformed',
type=str,
choices=['original', 'transformed', 'pipeline'],
help='Display mode: display original pictures or '
'transformed pictures or comparison pictures. "original" '
'only visualizes the original dataset & annotations; '
'"transformed" shows the resulting images processed through all the '
'transforms; "pipeline" shows all the intermediate images. '
'Defaults to "transformed".')
parser.add_argument(
'--output-dir',
'-o',
default=None,
type=str,
help='If there is no display interface, you can save it.')
parser.add_argument(
'--task',
'-t',
default='auto',
choices=['auto', 'textdet', 'textrecog'],
type=str,
help='Specify the task type of the dataset. If "auto", the task type '
'will be inferred from the config. If the script is unable to infer '
'the task type, you need to specify it manually. Defaults to "auto".')
parser.add_argument('--not-show', default=False, action='store_true')
parser.add_argument(
'--show-number',
'-n',
type=int,
default=sys.maxsize,
help='number of images selected to visualize, '
'must bigger than 0. if the number is bigger than length '
'of dataset, show all the images in dataset; '
'default "sys.maxsize", show all images in dataset')
parser.add_argument(
'--show-interval',
'-i',
type=float,
default=3,
help='the interval of show (s)')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def _get_adaptive_scale(img_shape: Tuple[int, int],
min_scale: float = 0.3,
max_scale: float = 3.0) -> float:
"""Get adaptive scale according to image shape.
The target scale depends on the the short edge length of the image. If the
short edge length equals 224, the output is 1.0. And output linear
scales according the short edge length. You can also specify the minimum
scale and the maximum scale to limit the linear scale.
Args:
img_shape (Tuple[int, int]): The shape of the canvas image.
min_scale (int): The minimum scale. Defaults to 0.3.
max_scale (int): The maximum scale. Defaults to 3.0.
Returns:
int: The adaptive scale.
"""
short_edge_length = min(img_shape)
scale = short_edge_length / 224.
return min(max(scale, min_scale), max_scale)
def make_grid(imgs, infos):
"""Concat list of pictures into a single big picture, align height here."""
visualizer = Visualizer.get_current_instance()
names = [info['name'] for info in infos]
ori_shapes = [
info['dataset_sample'].metainfo['img_shape'] for info in infos
]
max_height = int(max(img.shape[0] for img in imgs) * 1.1)
min_width = min(img.shape[1] for img in imgs)
horizontal_gap = min_width // 10
img_scale = _get_adaptive_scale((max_height, min_width))
texts = []
text_positions = []
start_x = 0
for i, img in enumerate(imgs):
pad_height = (max_height - img.shape[0]) // 2
pad_width = horizontal_gap // 2
# make border
imgs[i] = cv2.copyMakeBorder(
img,
pad_height,
max_height - img.shape[0] - pad_height + int(img_scale * 30 * 2),
pad_width,
pad_width,
cv2.BORDER_CONSTANT,
value=(255, 255, 255))
texts.append(f'{"execution: "}{i}\n{names[i]}\n{ori_shapes[i]}')
text_positions.append(
[start_x + img.shape[1] // 2 + pad_width, max_height])
start_x += img.shape[1] + horizontal_gap
display_img = np.concatenate(imgs, axis=1)
visualizer.set_image(display_img)
img_scale = _get_adaptive_scale(display_img.shape[:2])
visualizer.draw_texts(
texts,
positions=np.array(text_positions),
font_sizes=img_scale * 7,
colors='black',
horizontal_alignments='center',
font_families='monospace')
return visualizer.get_image()
class InspectCompose(Compose):
"""Compose multiple transforms sequentially.
And record "img" field of all results in one list.
"""
def __init__(self, transforms, intermediate_imgs):
super().__init__(transforms=transforms)
self.intermediate_imgs = intermediate_imgs
def __call__(self, data):
self.ptransforms = [
self.transforms[i] for i in range(len(self.transforms) - 1)
]
for t in self.ptransforms:
data = t(data)
# Keep the same meta_keys in the PackTextDetInputs
# or PackTextRecogInputs
self.transforms[-1].meta_keys = [key for key in data]
data_sample = self.transforms[-1](data)
if data is None:
return None
if 'img' in data:
self.intermediate_imgs.append({
'name':
t.__class__.__name__,
'dataset_sample':
data_sample['data_samples']
})
return data
def infer_dataset_task(task: str,
dataset_cfg: Config,
var_name: Optional[str] = None) -> str:
"""Try to infer the dataset's task type from the config and the variable
name."""
if task != 'auto':
return task
if dataset_cfg.pipeline is not None:
if dataset_cfg.pipeline[-1].type == 'PackTextDetInputs':
return 'textdet'
elif dataset_cfg.pipeline[-1].type == 'PackTextRecogInputs':
return 'textrecog'
if var_name is not None:
if 'det' in var_name:
return 'textdet'
elif 'rec' in var_name:
return 'textrecog'
raise ValueError(
'Unable to infer the task type from dataset pipeline '
'or variable name. Please specify the task type with --task argument '
'explicitly.')
def obtain_dataset_cfg(cfg: Config, phase: str, mode: str, task: str) -> Tuple:
"""Obtain dataset and visualizer from config. Two modes are supported:
1. Model Config Mode:
In this mode, the input config should be a complete model config, which
includes a dataset within pipeline and a visualizer.
2. Dataset Config Mode:
In this mode, the input config should be a complete dataset config,
which only includes basic dataset information, and it may does not
contain a visualizer and dataset pipeline.
Examples:
Typically, the model config files are stored in
`configs/textdet/dbnet/xxx.py` and should look like:
>>> train_dataloader = dict(
>>> batch_size=16,
>>> num_workers=8,
>>> persistent_workers=True,
>>> sampler=dict(type='DefaultSampler', shuffle=True),
>>> dataset=icdar2015_textdet_train)
while the dataset config files are stored in
`configs/textdet/_base_/datasets/xxx.py` and should be like:
>>> icdar2015_textdet_train = dict(
>>> type='OCRDataset',
>>> data_root=ic15_det_data_root,
>>> ann_file='textdet_train.json',
>>> filter_cfg=dict(filter_empty_gt=True, min_size=32),
>>> pipeline=None)
Args:
cfg (Config): Config object.
phase (str): The dataset phase to visualize.
mode (str): Script mode.
task (str): The current task type.
Returns:
Tuple: Tuple of (dataset, visualizer).
"""
default_cfgs = dict(
textdet=dict(
visualizer=dict(
type='TextDetLocalVisualizer',
name='visualizer',
vis_backends=[dict(type='LocalVisBackend')]),
pipeline=[
dict(
type='LoadImageFromFile',
color_type='color_ignore_orientation'),
dict(
type='LoadOCRAnnotations',
with_polygon=True,
with_bbox=True,
with_label=True,
),
dict(
type='PackTextDetInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape'))
]),
textrecog=dict(
visualizer=dict(
type='TextRecogLocalVisualizer',
name='visualizer',
vis_backends=[dict(type='LocalVisBackend')]),
pipeline=[
dict(type='LoadImageFromFile', ignore_empty=True, min_size=2),
dict(type='LoadOCRAnnotations', with_text=True),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape',
'valid_ratio'))
]),
)
# Model config mode
dataloader_name = f'{phase}_dataloader'
if dataloader_name in cfg:
dataset = cfg.get(dataloader_name).dataset
visualizer = cfg.visualizer
if mode == 'original':
default_cfg = default_cfgs[infer_dataset_task(task, dataset)]
# Image can be stored in other methods, like LMDB,
# which LoadImageFromFile can not handle
if dataset.pipeline is not None:
all_transform_types = [tfm['type'] for tfm in dataset.pipeline]
if any([
tfm_type.startswith('LoadImageFrom')
for tfm_type in all_transform_types
]):
for tfm in dataset.pipeline:
if tfm['type'].startswith('LoadImageFrom'):
# update LoadImageFrom** transform
default_cfg['pipeline'][0] = tfm
dataset.pipeline = default_cfg['pipeline']
else:
# In test_pipeline LoadOCRAnnotations is placed behind
# other transforms. Transform will not be applied on
# gt annotation.
if phase == 'test':
all_transform_types = [tfm['type'] for tfm in dataset.pipeline]
load_ocr_ann_tfm_index = all_transform_types.index(
'LoadOCRAnnotations')
load_ocr_ann_tfm = dataset.pipeline.pop(load_ocr_ann_tfm_index)
dataset.pipeline.insert(1, load_ocr_ann_tfm)
return dataset, visualizer
# Dataset config mode
for key in cfg.keys():
if key.endswith(phase) and cfg[key]['type'].endswith('Dataset'):
dataset = cfg[key]
default_cfg = default_cfgs[infer_dataset_task(
task, dataset, key.lower())]
visualizer = default_cfg['visualizer']
dataset['pipeline'] = default_cfg['pipeline'] if dataset[
'pipeline'] is None else dataset['pipeline']
return dataset, visualizer
raise ValueError(
f'Unable to find "{phase}_dataloader" or any dataset variable ending '
f'with "{phase}". Please check your config file or --phase argument '
'and try again. More details can be found in the docstring of '
'obtain_dataset_cfg function. Or, you may visit the documentation via '
'https://mmocr.readthedocs.io/en/dev-1.x/user_guides/useful_tools.html#dataset-visualization-tool' # noqa: E501
)
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
init_default_scope(cfg.get('default_scope', 'mmocr'))
dataset_cfg, visualizer_cfg = obtain_dataset_cfg(cfg, args.phase,
args.mode, args.task)
dataset = DATASETS.build(dataset_cfg)
visualizer = VISUALIZERS.build(visualizer_cfg)
visualizer.dataset_meta = dataset.metainfo
intermediate_imgs = []
if dataset_cfg.type == 'ConcatDataset':
for sub_dataset in dataset.datasets:
sub_dataset.pipeline = InspectCompose(
sub_dataset.pipeline.transforms, intermediate_imgs)
else:
dataset.pipeline = InspectCompose(dataset.pipeline.transforms,
intermediate_imgs)
# init visualization image number
assert args.show_number > 0
display_number = min(args.show_number, len(dataset))
progress_bar = ProgressBar(display_number)
# fetching items from dataset is a must for visualization
for i, _ in zip(range(display_number), dataset):
image_i = []
result_i = [result['dataset_sample'] for result in intermediate_imgs]
for k, datasample in enumerate(result_i):
image = datasample.img
if len(image.shape) == 3:
image = image[..., [2, 1, 0]] # bgr to rgb
image_show = visualizer.add_datasample(
'result',
image,
datasample,
draw_pred=False,
draw_gt=True,
show=False)
image_i.append(image_show)
if args.mode == 'pipeline':
image = make_grid(image_i, intermediate_imgs)
else:
image = image_i[-1]
if hasattr(datasample, 'img_path'):
filename = osp.basename(datasample.img_path)
else:
# some dataset have not image path
filename = f'{i}.jpg'
out_file = osp.join(args.output_dir,
filename) if args.output_dir is not None else None
if out_file is not None:
mmcv.imwrite(image[..., ::-1], out_file)
if not args.not_show:
visualizer.show(
image, win_name=filename, wait_time=args.show_interval)
intermediate_imgs.clear()
progress_bar.update()
if __name__ == '__main__':
main()
|