Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import os.path as osp | |
import mmcv | |
import mmengine | |
import numpy as np | |
from mmocr.utils import crop_img, dump_ocr_data | |
def collect_files(img_dir, gt_dir, split_info): | |
"""Collect all images and their corresponding groundtruth files. | |
Args: | |
img_dir (str): The image directory | |
gt_dir (str): The groundtruth directory | |
split_info (dict): The split information for train/val/test | |
Returns: | |
files (list): The list of tuples (img_file, groundtruth_file) | |
""" | |
assert isinstance(img_dir, str) | |
assert img_dir | |
assert isinstance(gt_dir, str) | |
assert gt_dir | |
assert isinstance(split_info, dict) | |
assert split_info | |
ann_list, imgs_list = [], [] | |
for group in split_info: | |
for img in split_info[group]: | |
image_path = osp.join(img_dir, img) | |
anno_path = osp.join(gt_dir, 'groups', group, | |
img.replace('jpg', 'json')) | |
# Filtering out the missing images | |
if not osp.exists(image_path) or not osp.exists(anno_path): | |
continue | |
imgs_list.append(image_path) | |
ann_list.append(anno_path) | |
files = list(zip(imgs_list, ann_list)) | |
assert len(files), f'No images found in {img_dir}' | |
print(f'Loaded {len(files)} images from {img_dir}') | |
return files | |
def collect_annotations(files, nproc=1): | |
"""Collect the annotation information. | |
Args: | |
files (list): The list of tuples (image_file, groundtruth_file) | |
nproc (int): The number of process to collect annotations | |
Returns: | |
images (list): The list of image information dicts | |
""" | |
assert isinstance(files, list) | |
assert isinstance(nproc, int) | |
if nproc > 1: | |
images = mmengine.track_parallel_progress( | |
load_img_info, files, nproc=nproc) | |
else: | |
images = mmengine.track_progress(load_img_info, files) | |
return images | |
def load_img_info(files): | |
"""Load the information of one image. | |
Args: | |
files (tuple): The tuple of (img_file, groundtruth_file) | |
Returns: | |
img_info (dict): The dict of the img and annotation information | |
""" | |
assert isinstance(files, tuple) | |
img_file, gt_file = files | |
assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split( | |
'.')[0] | |
# Read imgs while ignoring orientations | |
img = mmcv.imread(img_file, 'unchanged') | |
img_info = dict( | |
file_name=osp.join(osp.basename(img_file)), | |
height=img.shape[0], | |
width=img.shape[1], | |
segm_file=osp.join(osp.basename(gt_file))) | |
if osp.splitext(gt_file)[1] == '.json': | |
img_info = load_json_info(gt_file, img_info) | |
else: | |
raise NotImplementedError | |
return img_info | |
def load_json_info(gt_file, img_info): | |
"""Collect the annotation information. | |
Annotation Format | |
{ | |
'filedBBs': [{ | |
'poly_points': [[435,1406], [466,1406], [466,1439], [435,1439]], | |
"type": "fieldCheckBox", | |
"id": "f0", | |
"isBlank": 1, # 0:text,1:handwriting,2:print,3:blank,4:signature, | |
}], ... | |
"transcriptions":{ | |
"f38": "CASE NUMBER", | |
"f29": "July 1, 1949", | |
"t20": "RANK", | |
"t19": "COMPANY", | |
... | |
} | |
} | |
Some special characters are used in the transcription: | |
"«text»" indicates that "text" had a strikethrough | |
"¿" indicates the transcriber could not read a character | |
"§" indicates the whole line or word was illegible | |
"" (empty string) is if the field was blank | |
Args: | |
gt_file (str): The path to ground-truth | |
img_info (dict): The dict of the img and annotation information | |
Returns: | |
img_info (dict): The dict of the img and annotation information | |
""" | |
assert isinstance(gt_file, str) | |
assert isinstance(img_info, dict) | |
annotation = mmengine.load(gt_file) | |
anno_info = [] | |
# 'textBBs' contains the printed texts of the table while 'fieldBBs' | |
# contains the text filled by human. | |
for box_type in ['textBBs', 'fieldBBs']: | |
# NAF dataset only provides transcription GT for 'filedBBs', the | |
# 'textBBs' is only used for detection task. | |
if box_type == 'textBBs': | |
continue | |
for anno in annotation[box_type]: | |
# Skip images containing detection annotations only | |
if 'transcriptions' not in annotation.keys(): | |
continue | |
# Skip boxes without recognition GT | |
if anno['id'] not in annotation['transcriptions'].keys(): | |
continue | |
word = annotation['transcriptions'][anno['id']] | |
# Skip blank boxes | |
if len(word) == 0: | |
continue | |
bbox = np.array(anno['poly_points']).reshape(1, 8)[0].tolist() | |
anno = dict(bbox=bbox, word=word) | |
anno_info.append(anno) | |
img_info.update(anno_info=anno_info) | |
return img_info | |
def generate_ann(root_path, split, image_infos, preserve_vertical): | |
"""Generate cropped annotations and label txt file. | |
Args: | |
root_path (str): The root path of the dataset | |
split (str): The split of dataset. Namely: training or test | |
image_infos (list[dict]): A list of dicts of the img and | |
annotation information | |
preserve_vertical (bool): Whether to preserve vertical texts | |
""" | |
dst_image_root = osp.join(root_path, 'crops', split) | |
ignore_image_root = osp.join(root_path, 'ignores', split) | |
if split == 'training': | |
dst_label_file = osp.join(root_path, 'train_label.json') | |
elif split == 'val': | |
dst_label_file = osp.join(root_path, 'val_label.json') | |
elif split == 'test': | |
dst_label_file = osp.join(root_path, 'test_label.json') | |
else: | |
raise NotImplementedError | |
mmengine.mkdir_or_exist(dst_image_root) | |
mmengine.mkdir_or_exist(ignore_image_root) | |
img_info = [] | |
for image_info in image_infos: | |
index = 1 | |
src_img_path = osp.join(root_path, 'imgs', image_info['file_name']) | |
image = mmcv.imread(src_img_path) | |
src_img_root = image_info['file_name'].split('.')[0] | |
for anno in image_info['anno_info']: | |
word = anno['word'] | |
word = word.strip('\u202a') # Remove unicode control character | |
word = word.replace('»', | |
'').replace('«', | |
'') # Remove strikethrough flag | |
dst_img = crop_img(image, anno['bbox'], 0, 0) | |
h, w, _ = dst_img.shape | |
dst_img_name = f'{src_img_root}_{index}.png' | |
index += 1 | |
# Skip invalid and illegible annotations | |
if min(dst_img.shape) == 0 or '§' in word or '¿' in word or len( | |
word) == 0: | |
continue | |
# Skip vertical texts | |
# (Do Not Filter For Val and Test Split) | |
if (not preserve_vertical and h / w > 2) and split == 'training': | |
dst_img_path = osp.join(ignore_image_root, dst_img_name) | |
mmcv.imwrite(dst_img, dst_img_path) | |
continue | |
dst_img_path = osp.join(dst_image_root, dst_img_name) | |
mmcv.imwrite(dst_img, dst_img_path) | |
img_info.append({ | |
'file_name': dst_img_name, | |
'anno_info': [{ | |
'text': word | |
}] | |
}) | |
dump_ocr_data(img_info, dst_label_file, 'textrecog') | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Generate training, val, and test set of NAF ') | |
parser.add_argument('root_path', help='Root dir path of NAF') | |
parser.add_argument( | |
'--preserve-vertical', | |
help='Preserve samples containing vertical texts', | |
action='store_true') | |
parser.add_argument( | |
'--nproc', default=1, type=int, help='Number of process') | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
root_path = args.root_path | |
split_info = mmengine.load( | |
osp.join(root_path, 'annotations', 'train_valid_test_split.json')) | |
split_info['training'] = split_info.pop('train') | |
split_info['val'] = split_info.pop('valid') | |
for split in ['training', 'val', 'test']: | |
print(f'Processing {split} set...') | |
with mmengine.Timer( | |
print_tmpl='It takes {}s to convert NAF annotation'): | |
files = collect_files( | |
osp.join(root_path, 'imgs'), | |
osp.join(root_path, 'annotations'), split_info[split]) | |
image_infos = collect_annotations(files, nproc=args.nproc) | |
generate_ann(root_path, split, image_infos, args.preserve_vertical) | |
if __name__ == '__main__': | |
main() | |