MAERec-Gradio / mmocr /datasets /wildreceipt_dataset.py
Mountchicken's picture
Upload 704 files
9bf4bd7
raw
history blame
9.72 kB
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from typing import Callable, List, Optional, Sequence, Union
import numpy as np
from mmengine.dataset import BaseDataset
from mmengine.fileio import list_from_file
from mmocr.registry import DATASETS
from mmocr.utils.parsers import LineJsonParser
from mmocr.utils.polygon_utils import sort_vertex8
@DATASETS.register_module()
class WildReceiptDataset(BaseDataset):
"""WildReceipt Dataset for key information extraction. There are two files
to be loaded: metainfo and annotation. The metainfo file contains the
mapping between classes and labels. The annotation file contains the all
necessary information about the image, such as bounding boxes, texts, and
labels etc.
The metainfo file is a text file with the following format:
.. code-block:: none
0 Ignore
1 Store_name_value
2 Store_name_key
The annotation format is shown as follows.
.. code-block:: json
{
"file_name": "a.jpeg",
"height": 348,
"width": 348,
"annotations": [
{
"box": [
114.0,
19.0,
230.0,
19.0,
230.0,
1.0,
114.0,
1.0
],
"text": "CHOEUN",
"label": 1
},
{
"box": [
97.0,
35.0,
236.0,
35.0,
236.0,
19.0,
97.0,
19.0
],
"text": "KOREANRESTAURANT",
"label": 2
}
]
}
Args:
directed (bool): Whether to use directed graph. Defaults to False.
ann_file (str): Annotation file path. Defaults to ''.
metainfo (str or dict, optional): Meta information for dataset, such as
class information. If it's a string, it will be treated as a path
to the class file from which the class information will be loaded.
Defaults to None.
data_root (str, optional): The root directory for ``data_prefix`` and
``ann_file``. Defaults to ''.
data_prefix (dict, optional): Prefix for training data. Defaults to
dict(img_path='').
filter_cfg (dict, optional): Config for filter data. Defaults to None.
indices (int or Sequence[int], optional): Support using first few
data in annotation file to facilitate training/testing on a smaller
dataset. Defaults to None which means using all ``data_infos``.
serialize_data (bool, optional): Whether to hold memory using
serialized objects, when enabled, data loader workers can use
shared RAM from master process instead of making a copy. Defaults
to True.
pipeline (list, optional): Processing pipeline. Defaults to [].
test_mode (bool, optional): ``test_mode=True`` means in test phase.
Defaults to False.
lazy_init (bool, optional): Whether to load annotation during
instantiation. In some cases, such as visualization, only the meta
information of the dataset is needed, which is not necessary to
load annotation file. ``Basedataset`` can skip load annotations to
save time by set ``lazy_init=False``. Defaults to False.
max_refetch (int, optional): If ``Basedataset.prepare_data`` get a
None img. The maximum extra number of cycles to get a valid
image. Defaults to 1000.
"""
METAINFO = {
'category': [{
'id': '0',
'name': 'Ignore'
}, {
'id': '1',
'name': 'Store_name_value'
}, {
'id': '2',
'name': 'Store_name_key'
}, {
'id': '3',
'name': 'Store_addr_value'
}, {
'id': '4',
'name': 'Store_addr_key'
}, {
'id': '5',
'name': 'Tel_value'
}, {
'id': '6',
'name': 'Tel_key'
}, {
'id': '7',
'name': 'Date_value'
}, {
'id': '8',
'name': 'Date_key'
}, {
'id': '9',
'name': 'Time_value'
}, {
'id': '10',
'name': 'Time_key'
}, {
'id': '11',
'name': 'Prod_item_value'
}, {
'id': '12',
'name': 'Prod_item_key'
}, {
'id': '13',
'name': 'Prod_quantity_value'
}, {
'id': '14',
'name': 'Prod_quantity_key'
}, {
'id': '15',
'name': 'Prod_price_value'
}, {
'id': '16',
'name': 'Prod_price_key'
}, {
'id': '17',
'name': 'Subtotal_value'
}, {
'id': '18',
'name': 'Subtotal_key'
}, {
'id': '19',
'name': 'Tax_value'
}, {
'id': '20',
'name': 'Tax_key'
}, {
'id': '21',
'name': 'Tips_value'
}, {
'id': '22',
'name': 'Tips_key'
}, {
'id': '23',
'name': 'Total_value'
}, {
'id': '24',
'name': 'Total_key'
}, {
'id': '25',
'name': 'Others'
}]
}
def __init__(self,
directed: bool = False,
ann_file: str = '',
metainfo: Optional[Union[dict, str]] = None,
data_root: str = '',
data_prefix: dict = dict(img_path=''),
filter_cfg: Optional[dict] = None,
indices: Optional[Union[int, Sequence[int]]] = None,
serialize_data: bool = True,
pipeline: List[Union[dict, Callable]] = ...,
test_mode: bool = False,
lazy_init: bool = False,
max_refetch: int = 1000):
self.directed = directed
super().__init__(ann_file, metainfo, data_root, data_prefix,
filter_cfg, indices, serialize_data, pipeline,
test_mode, lazy_init, max_refetch)
self._metainfo['dataset_type'] = 'WildReceiptDataset'
self._metainfo['task_name'] = 'KIE'
@classmethod
def _load_metainfo(cls, metainfo: Union[str, dict] = None) -> dict:
"""Collect meta information from path to the class list or the
dictionary of meta.
Args:
metainfo (str or dict): Path to the class list, or a meta
information dict. If ``metainfo`` contains existed filename, it
will be parsed by ``list_from_file``.
Returns:
dict: Parsed meta information.
"""
cls_metainfo = copy.deepcopy(cls.METAINFO)
if isinstance(metainfo, str):
cls_metainfo['category'] = []
for line in list_from_file(metainfo):
k, v = line.split()
cls_metainfo['category'].append({'id': k, 'name': v})
return cls_metainfo
else:
return super()._load_metainfo(metainfo)
def load_data_list(self) -> List[dict]:
"""Load data list from annotation file.
Returns:
List[dict]: A list of annotation dict.
"""
parser = LineJsonParser(
keys=['file_name', 'height', 'width', 'annotations'])
data_list = []
for line in list_from_file(self.ann_file):
data_info = parser(line)
data_info = self.parse_data_info(data_info)
data_list.append(data_info)
return data_list
def parse_data_info(self, raw_data_info: dict) -> dict:
"""Parse data info from raw data info.
Args:
raw_data_info (dict): Raw data info.
Returns:
dict: Parsed data info.
- img_path (str): Path to the image.
- img_shape (tuple(int, int)): Image shape in (H, W).
- instances (list[dict]): A list of instances.
- bbox (ndarray(dtype=np.float32)): Shape (4, ). Bounding box.
- text (str): Annotation text.
- edge_label (int): Edge label.
- bbox_label (int): Bounding box label.
"""
raw_data_info['img_path'] = raw_data_info['file_name']
data_info = super().parse_data_info(raw_data_info)
annotations = data_info['annotations']
assert 'box' in annotations[0]
assert 'text' in annotations[0]
instances = []
for ann in annotations:
instance = {}
bbox = np.array(sort_vertex8(ann['box']), dtype=np.int32)
bbox = np.array([
bbox[0::2].min(), bbox[1::2].min(), bbox[0::2].max(),
bbox[1::2].max()
],
dtype=np.int32)
instance['bbox'] = bbox
instance['text'] = ann['text']
instance['bbox_label'] = ann.get('label', 0)
instance['edge_label'] = ann.get('edge', 0)
instances.append(instance)
return dict(
instances=instances,
img_path=data_info['img_path'],
img_shape=(data_info['height'], data_info['width']))