Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch.nn as nn | |
from mmdet.models.backbones import ResNet | |
from mmdet.models.backbones.resnet import Bottleneck | |
from mmocr.registry import MODELS | |
class CLIPBottleneck(Bottleneck): | |
"""Bottleneck for CLIPResNet. | |
It is a Bottleneck variant used in the ResNet variant of CLIP. After the | |
second convolution layer, there is an additional average pooling layer with | |
kernel_size 2 and stride 2, which is added as a plugin when the | |
input stride > 1. The stride of each convolution layer is always set to 1. | |
Args: | |
**kwargs: Keyword arguments for | |
:class:``mmdet.models.backbones.resnet.Bottleneck``. | |
""" | |
def __init__(self, **kwargs): | |
stride = kwargs.get('stride', 1) | |
kwargs['stride'] = 1 | |
plugins = kwargs.get('plugins', None) | |
if stride > 1: | |
if plugins is None: | |
plugins = [] | |
plugins.insert( | |
0, | |
dict( | |
cfg=dict(type='mmocr.AvgPool2d', kernel_size=2), | |
position='after_conv2')) | |
kwargs['plugins'] = plugins | |
super().__init__(**kwargs) | |
class CLIPResNet(ResNet): | |
"""Implement the ResNet variant used in `oCLIP. | |
<https://github.com/bytedance/oclip>`_. | |
It is also the official structure in | |
`CLIP <https://github.com/openai/CLIP>`_. | |
Compared with ResNetV1d structure, CLIPResNet replaces the | |
max pooling layer with an average pooling layer at the end | |
of the input stem. | |
In the Bottleneck of CLIPResNet, after the second convolution | |
layer, there is an additional average pooling layer with | |
kernel_size 2 and stride 2, which is added as a plugin | |
when the input stride > 1. | |
The stride of each convolution layer is always set to 1. | |
Args: | |
depth (int): Depth of resnet, options are [50]. Defaults to 50. | |
strides (sequence(int)): Strides of the first block of each stage. | |
Defaults to (1, 2, 2, 2). | |
deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv. | |
Defaults to True. | |
avg_down (bool): Use AvgPool instead of stride conv at | |
the downsampling stage in the bottleneck. Defaults to True. | |
**kwargs: Keyword arguments for | |
:class:``mmdet.models.backbones.resnet.ResNet``. | |
""" | |
arch_settings = { | |
50: (CLIPBottleneck, (3, 4, 6, 3)), | |
} | |
def __init__(self, | |
depth=50, | |
strides=(1, 2, 2, 2), | |
deep_stem=True, | |
avg_down=True, | |
**kwargs): | |
super().__init__( | |
depth=depth, | |
strides=strides, | |
deep_stem=deep_stem, | |
avg_down=avg_down, | |
**kwargs) | |
def _make_stem_layer(self, in_channels: int, stem_channels: int): | |
"""Build stem layer for CLIPResNet used in `CLIP | |
https://github.com/openai/CLIP>`_. | |
It uses an average pooling layer rather than a max pooling | |
layer at the end of the input stem. | |
Args: | |
in_channels (int): Number of input channels. | |
stem_channels (int): Number of output channels. | |
""" | |
super()._make_stem_layer(in_channels, stem_channels) | |
if self.deep_stem: | |
self.maxpool = nn.AvgPool2d(kernel_size=2) | |