MAERec-Gradio / mmocr /models /textrecog /backbones /nrtr_modality_transformer.py
Mountchicken's picture
Upload 704 files
9bf4bd7
raw
history blame
1.95 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, Optional, Sequence, Union
import torch
import torch.nn as nn
from mmengine.model import BaseModule
from mmocr.registry import MODELS
@MODELS.register_module()
class NRTRModalityTransform(BaseModule):
"""Modality transform in NRTR.
Args:
in_channels (int): Input channel of image. Defaults to 3.
init_cfg (dict or list[dict], optional): Initialization configs.
"""
def __init__(
self,
in_channels: int = 3,
init_cfg: Optional[Union[Dict, Sequence[Dict]]] = [
dict(type='Kaiming', layer='Conv2d'),
dict(type='Uniform', layer='BatchNorm2d')
]
) -> None:
super().__init__(init_cfg=init_cfg)
self.conv_1 = nn.Conv2d(
in_channels=in_channels,
out_channels=32,
kernel_size=3,
stride=2,
padding=1)
self.relu_1 = nn.ReLU(True)
self.bn_1 = nn.BatchNorm2d(32)
self.conv_2 = nn.Conv2d(
in_channels=32,
out_channels=64,
kernel_size=3,
stride=2,
padding=1)
self.relu_2 = nn.ReLU(True)
self.bn_2 = nn.BatchNorm2d(64)
self.linear = nn.Linear(512, 512)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Backbone forward.
Args:
x (torch.Tensor): Image tensor of shape :math:`(N, C, W, H)`. W, H
is the width and height of image.
Return:
Tensor: Output tensor.
"""
x = self.conv_1(x)
x = self.relu_1(x)
x = self.bn_1(x)
x = self.conv_2(x)
x = self.relu_2(x)
x = self.bn_2(x)
n, c, h, w = x.size()
x = x.permute(0, 3, 2, 1).contiguous().view(n, w, h * c)
x = self.linear(x)
x = x.permute(0, 2, 1).contiguous().view(n, -1, 1, w)
return x