Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import os | |
import os.path as osp | |
import mmcv | |
import mmengine | |
from PIL import Image | |
from mmocr.utils import dump_ocr_data | |
def convert_gif(img_path): | |
"""Convert the gif image to png format. | |
Args: | |
img_path (str): The path to the gif image | |
""" | |
img = Image.open(img_path) | |
dst_path = img_path.replace('gif', 'png') | |
img.save(dst_path) | |
os.remove(img_path) | |
print(f'Convert {img_path} to {dst_path}') | |
def collect_files(img_dir, gt_dir): | |
"""Collect all images and their corresponding groundtruth files. | |
Args: | |
img_dir (str): The image directory | |
gt_dir (str): The groundtruth directory | |
Returns: | |
files (list): The list of tuples (img_file, groundtruth_file) | |
""" | |
assert isinstance(img_dir, str) | |
assert img_dir | |
assert isinstance(gt_dir, str) | |
assert gt_dir | |
ann_list, imgs_list = [], [] | |
for img in os.listdir(img_dir): | |
img_path = osp.join(img_dir, img) | |
# mmcv cannot read gif images, so convert them to png | |
if img.endswith('gif'): | |
convert_gif(img_path) | |
img_path = img_path.replace('gif', 'png') | |
imgs_list.append(img_path) | |
ann_list.append(osp.join(gt_dir, 'gt_' + img.split('.')[0] + '.txt')) | |
files = list(zip(sorted(imgs_list), sorted(ann_list))) | |
assert len(files), f'No images found in {img_dir}' | |
print(f'Loaded {len(files)} images from {img_dir}') | |
return files | |
def collect_annotations(files, nproc=1): | |
"""Collect the annotation information. | |
Args: | |
files (list): The list of tuples (image_file, groundtruth_file) | |
nproc (int): The number of process to collect annotations | |
Returns: | |
images (list): The list of image information dicts | |
""" | |
assert isinstance(files, list) | |
assert isinstance(nproc, int) | |
if nproc > 1: | |
images = mmengine.track_parallel_progress( | |
load_img_info, files, nproc=nproc) | |
else: | |
images = mmengine.track_progress(load_img_info, files) | |
return images | |
def load_img_info(files): | |
"""Load the information of one image. | |
Args: | |
files (tuple): The tuple of (img_file, groundtruth_file) | |
Returns: | |
img_info (dict): The dict of the img and annotation information | |
""" | |
assert isinstance(files, tuple) | |
img_file, gt_file = files | |
# read imgs while ignoring orientations | |
img = mmcv.imread(img_file, 'unchanged') | |
img_info = dict( | |
file_name=osp.join(osp.basename(img_file)), | |
height=img.shape[0], | |
width=img.shape[1], | |
segm_file=osp.join(osp.basename(gt_file))) | |
if osp.splitext(gt_file)[1] == '.txt': | |
img_info = load_txt_info(gt_file, img_info) | |
else: | |
raise NotImplementedError | |
return img_info | |
def load_txt_info(gt_file, img_info): | |
"""Collect the annotation information. | |
The annotation format is as the following: | |
left, top, right, bottom, "transcription" | |
Args: | |
gt_file (str): The path to ground-truth | |
img_info (dict): The dict of the img and annotation information | |
Returns: | |
img_info (dict): The dict of the img and annotation information | |
""" | |
anno_info = [] | |
with open(gt_file) as f: | |
lines = f.readlines() | |
for line in lines: | |
xmin, ymin, xmax, ymax = line.split(',')[0:4] | |
x = max(0, int(xmin)) | |
y = max(0, int(ymin)) | |
w = int(xmax) - x | |
h = int(ymax) - y | |
bbox = [x, y, w, h] | |
segmentation = [x, y, x + w, y, x + w, y + h, x, y + h] | |
anno = dict( | |
iscrowd=0, | |
category_id=1, | |
bbox=bbox, | |
area=w * h, | |
segmentation=[segmentation]) | |
anno_info.append(anno) | |
img_info.update(anno_info=anno_info) | |
return img_info | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Generate training and test set of IC11') | |
parser.add_argument('root_path', help='Root dir path of IC11') | |
parser.add_argument( | |
'--nproc', default=1, type=int, help='Number of process') | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
root_path = args.root_path | |
for split in ['training', 'test']: | |
print(f'Processing {split} set...') | |
with mmengine.Timer(print_tmpl='It takes {}s to convert annotation'): | |
files = collect_files( | |
osp.join(root_path, 'imgs', split), | |
osp.join(root_path, 'annotations', split)) | |
image_infos = collect_annotations(files, nproc=args.nproc) | |
dump_ocr_data(image_infos, | |
osp.join(root_path, 'instances_' + split + '.json'), | |
'textdet') | |
if __name__ == '__main__': | |
main() | |