Mountchicken's picture
[Update] Inital Update
174ad5e
raw
history blame
6.81 kB
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
import mmcv
import mmengine
from mmocr.utils import crop_img, dump_ocr_data
def collect_files(img_dir, gt_dir):
"""Collect all images and their corresponding groundtruth files.
Args:
img_dir (str): The image directory
gt_dir (str): The groundtruth directory
Returns:
files (list): The list of tuples (img_file, groundtruth_file)
"""
assert isinstance(img_dir, str)
assert img_dir
assert isinstance(gt_dir, str)
assert gt_dir
ann_list, imgs_list = [], []
for img_file in os.listdir(img_dir):
ann_file = 'gt_' + str(int(img_file[2:6])) + '.txt'
ann_list.append(osp.join(gt_dir, ann_file))
imgs_list.append(osp.join(img_dir, img_file))
files = list(zip(imgs_list, ann_list))
assert len(files), f'No images found in {img_dir}'
print(f'Loaded {len(files)} images from {img_dir}')
return files
def collect_annotations(files, nproc=1):
"""Collect the annotation information.
Args:
files (list): The list of tuples (image_file, groundtruth_file)
nproc (int): The number of process to collect annotations
Returns:
images (list): The list of image information dicts
"""
assert isinstance(files, list)
assert isinstance(nproc, int)
if nproc > 1:
images = mmengine.track_parallel_progress(
load_img_info, files, nproc=nproc)
else:
images = mmengine.track_progress(load_img_info, files)
return images
def load_img_info(files):
"""Load the information of one image.
Args:
files (tuple): The tuple of (img_file, groundtruth_file)
Returns:
img_info (dict): The dict of the img and annotation information
"""
assert isinstance(files, tuple)
img_file, gt_file = files
assert int(osp.basename(gt_file)[3:-4]) == int(
osp.basename(img_file)[2:-4])
# read imgs while ignoring orientations
img = mmcv.imread(img_file, 'unchanged')
img_info = dict(
file_name=osp.join(osp.basename(img_file)),
height=img.shape[0],
width=img.shape[1],
segm_file=osp.join(osp.basename(gt_file)))
if osp.splitext(gt_file)[1] == '.txt':
img_info = load_txt_info(gt_file, img_info)
else:
raise NotImplementedError
return img_info
def load_txt_info(gt_file, img_info):
"""Collect the annotation information.
The annotation format is as the following:
x1,y1,x2,y2,x3,y3,x4,y4,text
118,15,147,15,148,46,118,46,LƯỢNG
149,9,165,9,165,43,150,43,TỐT
167,9,180,9,179,43,167,42,ĐỂ
181,12,193,12,193,43,181,43,CÓ
195,13,215,14,215,46,196,46,VIỆC
217,13,237,14,239,47,217,46,LÀM,
Args:
gt_file (str): The path to ground-truth
img_info (dict): The dict of the img and annotation information
Returns:
img_info (dict): The dict of the img and annotation information
"""
with open(gt_file, encoding='utf-8') as f:
anno_info = []
for line in f:
line = line.strip('\n')
ann = line.split(',')
bbox = ann[0:8]
word = line[len(','.join(bbox)) + 1:]
bbox = [int(coord) for coord in bbox]
# Ignore hard samples
if word == '###':
continue
assert len(bbox) == 8
anno = dict(bbox=bbox, word=word)
anno_info.append(anno)
img_info.update(anno_info=anno_info)
return img_info
def generate_ann(root_path, split, image_infos, preserve_vertical):
"""Generate cropped annotations and label txt file.
Args:
root_path (str): The root path of the dataset
split (str): The split of dataset. Namely: training or test
image_infos (list[dict]): A list of dicts of the img and
annotation information
preserve_vertical (bool): Whether to preserve vertical texts
"""
dst_image_root = osp.join(root_path, 'crops', split)
ignore_image_root = osp.join(root_path, 'ignores', split)
if split == 'training':
dst_label_file = osp.join(root_path, 'train_label.json')
elif split == 'test':
dst_label_file = osp.join(root_path, 'test_label.json')
elif split == 'unseen_test':
dst_label_file = osp.join(root_path, 'unseen_test_label.json')
os.makedirs(dst_image_root, exist_ok=True)
img_info = []
for image_info in image_infos:
index = 1
src_img_path = osp.join(root_path, 'imgs', split,
image_info['file_name'])
image = mmcv.imread(src_img_path)
src_img_root = image_info['file_name'].split('.')[0]
for anno in image_info['anno_info']:
word = anno['word']
dst_img = crop_img(image, anno['bbox'], 0, 0)
h, w, _ = dst_img.shape
dst_img_name = f'{src_img_root}_{index}.png'
index += 1
# Skip invalid annotations
if min(dst_img.shape) == 0:
continue
# Skip vertical texts
if not preserve_vertical and h / w > 2 and split == 'training':
dst_img_path = osp.join(ignore_image_root, dst_img_name)
mmcv.imwrite(dst_img, dst_img_path)
continue
dst_img_path = osp.join(dst_image_root, dst_img_name)
mmcv.imwrite(dst_img, dst_img_path)
img_info.append({
'file_name': dst_img_name,
'anno_info': [{
'text': word
}]
})
dump_ocr_data(img_info, dst_label_file, 'textrecog')
def parse_args():
parser = argparse.ArgumentParser(
description='Generate training and test set of VinText ')
parser.add_argument('root_path', help='Root dir path of VinText')
parser.add_argument(
'--preserve-vertical',
help='Preserve samples containing vertical texts',
action='store_true')
parser.add_argument(
'--nproc', default=1, type=int, help='Number of processes')
args = parser.parse_args()
return args
def main():
args = parse_args()
root_path = args.root_path
for split in ['training', 'test', 'unseen_test']:
print(f'Processing {split} set...')
with mmengine.Timer(
print_tmpl='It takes {}s to convert VinText annotation'):
files = collect_files(
osp.join(root_path, 'imgs', split),
osp.join(root_path, 'annotations'))
image_infos = collect_annotations(files, nproc=args.nproc)
generate_ann(root_path, split, image_infos, args.preserve_vertical)
if __name__ == '__main__':
main()