MAERec-Gradio / configs /textrecog /nrtr /nrtr_resnet31-1by8-1by4_union14m.py
Mountchicken's picture
Upload 704 files
9bf4bd7
raw
history blame
3.48 kB
_base_ = [
'../_base_/datasets/union14m_train.py',
'../_base_/datasets/union14m_benchmark.py',
'../_base_/datasets/cute80.py',
'../_base_/datasets/iiit5k.py',
'../_base_/datasets/svt.py',
'../_base_/datasets/svtp.py',
'../_base_/datasets/icdar2013.py',
'../_base_/datasets/icdar2015.py',
'../_base_/default_runtime.py',
'../_base_/schedules/schedule_adam_base.py',
'_base_nrtr_resnet31.py',
]
# optimizer settings
train_cfg = dict(max_epochs=6)
# learning policy
param_scheduler = [
dict(type='MultiStepLR', milestones=[3, 4], end=6),
]
_base_.pop('model')
dictionary = dict(
type='Dictionary',
dict_file= # noqa
'{{ fileDirname }}/../../../dicts/english_digits_symbols_space.txt',
with_padding=True,
with_unknown=True,
same_start_end=True,
with_start=True,
with_end=True)
model = dict(
type='NRTR',
backbone=dict(
type='ResNet31OCR',
layers=[1, 2, 5, 3],
channels=[32, 64, 128, 256, 512, 512],
stage4_pool_cfg=dict(kernel_size=(2, 1), stride=(2, 1)),
last_stage_pool=False),
encoder=dict(type='NRTREncoder'),
decoder=dict(
type='NRTRDecoder',
module_loss=dict(
type='CEModuleLoss', ignore_first_char=True, flatten=True),
postprocessor=dict(type='AttentionPostprocessor'),
dictionary=dictionary,
max_seq_len=30,
),
data_preprocessor=dict(
type='TextRecogDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375]))
# dataset settings
train_list = [
_base_.union14m_challenging, _base_.union14m_hard, _base_.union14m_medium,
_base_.union14m_normal, _base_.union14m_easy
]
val_list = [
_base_.cute80_textrecog_test, _base_.iiit5k_textrecog_test,
_base_.svt_textrecog_test, _base_.svtp_textrecog_test,
_base_.icdar2013_textrecog_test, _base_.icdar2015_textrecog_test
]
test_list = [
_base_.union14m_benchmark_artistic,
_base_.union14m_benchmark_multi_oriented,
_base_.union14m_benchmark_contextless,
_base_.union14m_benchmark_curve,
_base_.union14m_benchmark_incomplete,
_base_.union14m_benchmark_incomplete_ori,
_base_.union14m_benchmark_multi_words,
_base_.union14m_benchmark_salient,
_base_.union14m_benchmark_general,
]
train_dataset = dict(
type='ConcatDataset', datasets=train_list, pipeline=_base_.train_pipeline)
test_dataset = dict(
type='ConcatDataset', datasets=test_list, pipeline=_base_.test_pipeline)
val_dataset = dict(
type='ConcatDataset', datasets=val_list, pipeline=_base_.test_pipeline)
train_dataloader = dict(
batch_size=128,
num_workers=24,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
test_dataloader = dict(
batch_size=128,
num_workers=4,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
val_dataloader = dict(
batch_size=128,
num_workers=4,
persistent_workers=True,
pin_memory=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=val_dataset)
val_evaluator = dict(
dataset_prefixes=['CUTE80', 'IIIT5K', 'SVT', 'SVTP', 'IC13', 'IC15'])
test_evaluator = dict(dataset_prefixes=[
'artistic', 'multi-oriented', 'contextless', 'curve', 'incomplete',
'incomplete-ori', 'multi-words', 'salient', 'general'
])