Spaces:
Sleeping
Sleeping
_base_ = [ | |
'../_base_/datasets/union14m_train.py', | |
'../_base_/datasets/union14m_benchmark.py', | |
'../_base_/datasets/cute80.py', | |
'../_base_/datasets/iiit5k.py', | |
'../_base_/datasets/svt.py', | |
'../_base_/datasets/svtp.py', | |
'../_base_/datasets/icdar2013.py', | |
'../_base_/datasets/icdar2015.py', | |
'../_base_/default_runtime.py', | |
'../_base_/schedules/schedule_adam_step_5e.py', | |
'_base_sar_resnet31_parallel-decoder.py', | |
] | |
_base_.pop('model') | |
dictionary = dict( | |
type='Dictionary', | |
dict_file= # noqa | |
'{{ fileDirname }}/../../../dicts/english_digits_symbols_space.txt', | |
with_padding=True, | |
with_unknown=True, | |
same_start_end=True, | |
with_start=True, | |
with_end=True) | |
model = dict( | |
type='SARNet', | |
data_preprocessor=dict( | |
type='TextRecogDataPreprocessor', | |
mean=[127, 127, 127], | |
std=[127, 127, 127]), | |
backbone=dict(type='ResNet31OCR'), | |
encoder=dict( | |
type='SAREncoder', | |
enc_bi_rnn=False, | |
enc_do_rnn=0.1, | |
enc_gru=False, | |
), | |
decoder=dict( | |
type='SequentialSARDecoder', | |
enc_bi_rnn=False, | |
dec_bi_rnn=False, | |
dec_do_rnn=0, | |
dec_gru=False, | |
pred_dropout=0.1, | |
d_k=512, | |
pred_concat=True, | |
postprocessor=dict(type='AttentionPostprocessor'), | |
module_loss=dict( | |
type='CEModuleLoss', ignore_first_char=True, reduction='mean'), | |
dictionary=dictionary, | |
max_seq_len=30)) | |
# dataset settings | |
train_list = [ | |
_base_.union14m_challenging, _base_.union14m_hard, _base_.union14m_medium, | |
_base_.union14m_normal, _base_.union14m_easy | |
] | |
val_list = [ | |
_base_.cute80_textrecog_test, _base_.iiit5k_textrecog_test, | |
_base_.svt_textrecog_test, _base_.svtp_textrecog_test, | |
_base_.icdar2013_textrecog_test, _base_.icdar2015_textrecog_test | |
] | |
test_list = [ | |
_base_.union14m_benchmark_artistic, | |
_base_.union14m_benchmark_multi_oriented, | |
_base_.union14m_benchmark_contextless, | |
_base_.union14m_benchmark_curve, | |
_base_.union14m_benchmark_incomplete, | |
_base_.union14m_benchmark_incomplete_ori, | |
_base_.union14m_benchmark_multi_words, | |
_base_.union14m_benchmark_salient, | |
_base_.union14m_benchmark_general, | |
] | |
train_dataset = dict( | |
type='ConcatDataset', datasets=train_list, pipeline=_base_.train_pipeline) | |
test_dataset = dict( | |
type='ConcatDataset', datasets=test_list, pipeline=_base_.test_pipeline) | |
val_dataset = dict( | |
type='ConcatDataset', datasets=val_list, pipeline=_base_.test_pipeline) | |
train_dataloader = dict( | |
batch_size=128, | |
num_workers=24, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=True), | |
dataset=train_dataset) | |
test_dataloader = dict( | |
batch_size=128, | |
num_workers=4, | |
persistent_workers=True, | |
drop_last=False, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=test_dataset) | |
val_dataloader = dict( | |
batch_size=128, | |
num_workers=4, | |
persistent_workers=True, | |
pin_memory=True, | |
drop_last=False, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=val_dataset) | |
val_evaluator = dict( | |
dataset_prefixes=['CUTE80', 'IIIT5K', 'SVT', 'SVTP', 'IC13', 'IC15']) | |
test_evaluator = dict(dataset_prefixes=[ | |
'artistic', 'multi-oriented', 'contextless', 'curve', 'incomplete', | |
'incomplete-ori', 'multi-words', 'salient', 'general' | |
]) | |