Spaces:
Sleeping
Sleeping
model = dict( | |
type='DRRG', | |
backbone=dict( | |
type='mmdet.ResNet', | |
depth=50, | |
num_stages=4, | |
out_indices=(0, 1, 2, 3), | |
frozen_stages=-1, | |
norm_cfg=dict(type='BN', requires_grad=True), | |
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'), | |
norm_eval=True, | |
style='caffe'), | |
neck=dict( | |
type='FPN_UNet', in_channels=[256, 512, 1024, 2048], out_channels=32), | |
det_head=dict( | |
type='DRRGHead', | |
in_channels=32, | |
text_region_thr=0.3, | |
center_region_thr=0.4, | |
module_loss=dict(type='DRRGModuleLoss'), | |
postprocessor=dict(type='DRRGPostprocessor', link_thr=0.80)), | |
data_preprocessor=dict( | |
type='TextDetDataPreprocessor', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
bgr_to_rgb=True, | |
pad_size_divisor=32)) | |
train_pipeline = [ | |
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), | |
dict( | |
type='LoadOCRAnnotations', | |
with_bbox=True, | |
with_polygon=True, | |
with_label=True), | |
dict( | |
type='TorchVisionWrapper', | |
op='ColorJitter', | |
brightness=32.0 / 255, | |
saturation=0.5), | |
dict( | |
type='RandomResize', | |
scale=(800, 800), | |
ratio_range=(0.75, 2.5), | |
keep_ratio=True), | |
dict( | |
type='TextDetRandomCropFlip', | |
crop_ratio=0.5, | |
iter_num=1, | |
min_area_ratio=0.2), | |
dict( | |
type='RandomApply', | |
transforms=[dict(type='RandomCrop', min_side_ratio=0.3)], | |
prob=0.8), | |
dict( | |
type='RandomApply', | |
transforms=[ | |
dict( | |
type='RandomRotate', | |
max_angle=60, | |
use_canvas=True, | |
pad_with_fixed_color=False) | |
], | |
prob=0.5), | |
dict( | |
type='RandomChoice', | |
transforms=[[ | |
dict(type='Resize', scale=800, keep_ratio=True), | |
dict(type='SourceImagePad', target_scale=800) | |
], | |
dict(type='Resize', scale=800, keep_ratio=False)], | |
prob=[0.4, 0.6]), | |
dict(type='RandomFlip', prob=0.5, direction='horizontal'), | |
dict( | |
type='PackTextDetInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape')) | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), | |
dict(type='Resize', scale=(1024, 640), keep_ratio=True), | |
# add loading annotation after ``Resize`` because ground truth | |
# does not need to do resize data transform | |
dict( | |
type='LoadOCRAnnotations', | |
with_polygon=True, | |
with_bbox=True, | |
with_label=True), | |
dict( | |
type='PackTextDetInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor')) | |
] | |